

Koreographer Quick Start Guide
for v1.6.0

Copyright © 2020 Sonic Bloom, LLC 1 | Page

Table of Contents

Overview 3

Minimum Required Elements 3

Outline of Instructions 3

Detailed Walkthrough 3
Opening and Viewing the Koreography Editor 3

Koreography Editor 4
Create and Configure Koreography 4
Create and Configure a KoreographyTrack 5
Create and Configure KoreographyEvents 5

Event Types 6
Payload Types 6

Setting up Koreographer in the Unity Scene 8
Create a Component that Handles KoreographyEvents 10

The Event ID 12
Callback Functions 12
The Completed Component Script 13

Running and Testing the Koreographer Functionality 14

Copyright © 2020 Sonic Bloom, LLC 2 | Page

Overview
To demonstrate using Koreographer in a scene, we will create a basic Koreographer setup in a barebones
Unity scene using the least possible number of steps.

Minimum Required Elements

● The Koreographer component.
● A component that implements the IKoreographedPlayer interface (examples include the provided

SimpleMusicPlayer and MultiMusicPlayer components).
● At least one AudioClip (with Load Type set to Decompress On Load). This can be any audio clip.
● At least one Koreography asset that in turn contains...
● At least one KoreographyTrack asset that in turn has...
● One or more KoreographyEvents.
● One or more MonoBehaviour components that have registered for the Event ID of the

KoreographyTrack.

Outline of Instructions

1. Open an existing Unity project or create a new one.
2. Import the Koreographer Unity Package (generally this can be done via the Asset Store).
3. Open the Koreography Editor.
4. Create a Koreography asset file.
5. Associate the Koreography with an AudioClip.
6. Create a new KoreographyTrack.
7. Define the Event ID for the KoreographyTrack.
8. Create one or more KoreographyEvents.
9. Create a HelloKoreographer MonoBehaviour.
10. Setup and test a Unity scene with the following components:

a. Koreographer
b. SimpleMusicPlayer
c. HelloKoreographer

Detailed Walkthrough

Opening and Viewing the Koreography Editor

1. Open Unity and create a new Scene in either a new or existing project.
2. Import the Koreographer Unity Package (generally this can be done via the Asset Store).
3. Upon importing the Koreographer Unity Package, a Koreography Editor menu entry is added to the

Window menu. Select that menu item to open the Koreography Editor.

Copyright © 2020 Sonic Bloom, LLC 3 | Page

http://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/AssetStore.html
https://docs.unity3d.com/Manual/AssetStore.html

The Koreography Editor can be opened from the Window menu

Koreography Editor
The Koreography Editor is the main tool used to create and edit:

● Koreography: An asset that associates an AudioClip with a group of KoreographyTracks and a Tempo
Map (defined through Tempo Sections).

● KoreographyTracks: A sequence of KoreographyEvents defined along the audio timeline.
● KoreographyEvent: An event, either instantaneous (OneOff) or covering a span of time (Span), that

may optionally contain a Payload.

Create and Configure Koreography

4. Now that the Koreography Editor is open, we must create our first Koreography asset. At the
upper-right hand corner of the editor window are buttons that allow you to either load an existing
Koreography asset or create a new one.

Create and load a new Koreography asset with the New Koreography button

Click the New Koreography button, name the new asset file MyFirstKoreography, and save it in your
Unity project.

5. Now that we have a Koreography asset loaded, we must associate an AudioClip with it. Select the
Unity load widget “⊙” at the right-hand side of the AudioClip field and select your audio.

Use the Unity load widget “⊙” to load an AudioClip

After loading, save the asset by selecting “Save Project” from the File menu.

Copyright © 2020 Sonic Bloom, LLC 4 | Page

Save changes to Asset files in Unity with the Save Project menu entry

Create and Configure a KoreographyTrack

6. Now that we have a Koreography asset with an associated AudioClip, we must create a
KoreographyTrack, which will contain our events. To do so, select the New Track button at the right
side of the Koreography Editor window.

 Create and Load a new KoreographyTrack asset with the New button

Name the new asset file MyFirstKoreographyTrack and save it in your Unity project.
7. When we create the KoreographyTrack, the Event ID is set to the name of the asset (a non-unique

string ID). The Event ID is the key that listener scripts use to register for events from Koreographer at
runtime. Change the ID from the name of the file to TestEventID.

 Set the Track Event ID of the KoreographyTrack to “TestEventID”

Create and Configure KoreographyEvents
Now we have all of the prerequisite elements for creating KoreographyEvents. Before we do so, we will
configure the structure of the events we wish to create. To configure the Event Types and Payload Types,
look at the right-hand side of the screen just above the waveform.

Copyright © 2020 Sonic Bloom, LLC 5 | Page

 Event Type and Payload Type settings for newly created KoreographyEvents

Event Types

● OneOff: If the OneOff button is depressed during KoreographyEvent creation, OneOff events are
created.

● Span: If the Span button is depressed, events will span a range of time along the audio timeline. The
event is started when an event creation key is pressed and ends when the depressed key is released.

Payload Types

Built-in Payload Types

● No Payload: This event is essentially a non-descript message; a trigger.
● Color: This event carries a Color value within it that can be retrieved by event subscribers.
● Curve: Same as the Color except that it carries an AnimationCurve object.
● Float: Same as the Color except that it carries a number.
● Gradient: Same as the Color except that it carries a Gradient object.
● Int: Same as the Color except that it carries a whole number.
● Text: Same as the Color except that it carries text.
● Spectrum: Same as the Color except that it carries a set of Frequency Spectra. This Payload

does not appear in the Payload list and can only be created via the Analysis Settings window.

KoreographyEvents can be created with either the Draw Tool or the keyboard during playback. For this guide
we will add them with the keyboard during playback.

8. To create events with the keyboard we must play the AudioClip using the music player buttons on the
left hand side of the Koreography Editor window.

The music player buttons

Once the audio is playing, we press E, Return, or Enter along with the point in the AudioClip where
we would like to generate an event. KoreographyEvents are generated using the event settings just

Copyright © 2020 Sonic Bloom, LLC 6 | Page

above the Waveform view and will display as vertical red bars for OneOff events or rectangular
sections for Spans.

Note: Just below the bottom-left corner of the Waveform view is the Snap to Beat setting. This
enables quantization with the music and is on by default. Uncheck the box to allow for free-form
music markup.

With Snap to Beat checked, the Koreography Editor will use the information in the Tempo
Section Settings to determine where beats fall within the music. The beat positions are depicted
as vertical white lines behind the waveform. Adjust the tempo with the Tempo Section Settings
tools to align the the beats to your music.

OneOff events

Span events

Payloads of selected events can be manually altered or tweaked after creation in the lower-left hand corner of
the Koreography Editor. You can always view an event’s payload, or lack thereof, by selecting the event and
referring to the Selected Event Settings in the lower-left hand corner.

Copyright © 2020 Sonic Bloom, LLC 7 | Page

Example Text Payload settings

For more detail on event types and payload configurations, see the Koreographer User’s Guide that
accompanies this document.

Setting up Koreographer in the Unity Scene

9. Now that we have created a Koreography asset and associated an AudioClip, a KoreographyTrack,
and KoreographyEvents with it, we can move on to setting up our scene. Our first step is to create a
GameObject to which to attach our SimpleMusicPlayer and Koreographer components.

a. Create an empty GameObject for this scene and rename it Music Player.

Select Create Empty from the GameObject menu

b. Select the GameObject in the Hierarchy and select Add Component in the Inspector.

The Add Component button

Copyright © 2020 Sonic Bloom, LLC 8 | Page

c. Type Koreographer into the search field and select the Koreographer script to add it to this
GameObject.

Add the Koreographer component

d. We will now repeat the last two steps to add the SimpleMusicPlayer component to this object.
Adding the SimpleMusicPlayer script will also add the required AudioSource component.

Add the Simple Music Player component

10. Now that we have a GameObject in the scene setup with the two necessary classes for tracking and
firing events, we need to assign the Koreography that we configured. Assigning the Koreography asset
will include the KoreographyTracks, the KoreographyEvents, and the AudioClip we assigned to it.

a. We need to assign the MyFirstKoreography asset to the SimpleMusicPlayer component. This
can be done by dragging our MyFirstKoreography asset into the empty form field or by
selecting the Unity load widget “⊙” on the right side of the empty form field, selecting the
Assets tab in the resulting popup window, and selecting the correct asset.

Setting the Koreography field of the Simple Music Player

Note: There is no need to set the AudioClip on the AudioSource component. The SimpleMusicPlayer
handles that for us on play!

Copyright © 2020 Sonic Bloom, LLC 9 | Page

b. Our last step in setting up our Koreographer object in the scene is to uncheck the AudioSource
Play On Awake property.

Uncheck Play On Awake

Create a Component that Handles KoreographyEvents
We now have a full-fledged Koreographer object ready to track and fire events. We just need a GameObject in
the scene with the ability to subscribe to these events. To add this ability we will need to create a new
component.

11. Create another empty GameObject in the scene and name it TestEventSubscriber.
12. Add a new C# script component to the newly created GameObject. To do this:

a. Select Add Component under the TestEventSubscriber properties in the Unity Inspector and
select the New Script menu item.

Select New Script

b. Name the new script EventSubscriber and switch the language to C#. Confirm these settings
and create/add the script to the TestEventSubscriber object by selecting Create and Add.

Copyright © 2020 Sonic Bloom, LLC 10 | Page

Create and Add the EventSubscriber script

You will see the EventSubscriber script now attached to the GameObject as well as in Unity’s Project tab.

13. We now need to edit the script so that it can respond to events from our Koreography. Double-click it
in either location and the script will open in your preferred script editor (this may be MonoDevelop or
Visual Studio).

a. At first, your script will be blank like so.

using UnityEngine;
using System.Collections;

public class EventSubscriber : MonoBehaviour {

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }
}

b. Subscribing to Koreographer for events is simple: we access the singleton instance (fancy
name for a global object) of Koreographer and tell it what events we want to subscribe for.

c. There are two things we have to consider when subscribing for events:
■ the Event ID and

Copyright © 2020 Sonic Bloom, LLC 11 | Page

■ the Callback Function to trigger when an event is fired.

The Event ID
This Event ID is what is set when creating the KoreographyTrack itself as either the name of the
KoreograpyTrack file (default when first created) or to a custom name after creation. For our purposes, we set
this to TestEventID. The Event ID allows us to create many distinct tracks of Koreography that can be
triggered at the same time.

Callback Functions
Callback functions rely on function delegates. A function delegate defines the structure of a callback: its
parameters and their types - its signature! We will create a function that uses the same structure as the
Koreographer system’s delegates. When we register this function with Koreographer, we will also register the
Event ID.

Koreographer defines two function delegates we can use when creating callback functions:

public delegate void KoreographyEventCallback(KoreographyEvent koreoEvent);
public delegate void KoreographyEventCallbackWithTime(KoreographyEvent koreoEvent, int

sampleTime, int sampleDelta, DeltaSlice deltaSlice);

The first delegate function KoreographyEventCallback defines a function with a return type of void and a
single KoreographyEvent parameter. This is used for when you only wish to receive the event object itself.

The second delegate function KoreographyEventCallbackWithTime defines a function with a return type of
void and three parameters of KoreographyEvent, two ints (sampleTime and sampleDelta), and a DeltaSlice
object. This is used for when you wish to receive the event and some information about where in the track the
event occurred. The sampleTime parameter is the current time of the audio in samples at the moment the
KoreographyEvent was sent while sampleDelta will be the total number of samples since the last frame
(similar to how Time.deltaTime provides the canonical time since the previous frame). For more information on
the DeltaSlice object, see the Koreographer User’s Guide.

14. In order to use the Koreographer API we will need to add the namespace to the script. Add “using
SonicBloom.Koreo;“ beneath the “using UnityEngine;“ directive:

using UnityEngine;
using SonicBloom.Koreo;

15. Create a single function that matches the first delegate (only a single parameter of KoreographyEvent).
In the body of the function we will add a Debug statement to print a message about receiving an
event. As you can see below, the structure of the function FireEventDebugLog matches that of the
KoreographyEventCallback function delegate.

Copyright © 2020 Sonic Bloom, LLC 12 | Page

void FireEventDebugLog(KoreographyEvent koreoEvent)
{

 Debug.Log("Koreography Event Fired.");
}

16. Our last task before we test will be to register the Event ID and the callback function

FireEventDebugLog. Registering for events is done by calling the Koreographer singleton’s
RegisterForEvents function. This is done once per instance of the object, so a good place to put it
would be in the Start function.

// Use this for initialization

void Start()
{

 Koreographer.Instance.RegisterForEvents("TestEventID", FireEventDebugLog);
}

The Completed Component Script
The completed version of the EventSubscriber script will look like this. Save the file and close out your script
editor.

using UnityEngine;
using SonicBloom.Koreo;

public class EventSubscriber : MonoBehaviour
{
 // Use this for initialization
 void Start()
 {
 Koreographer.Instance.RegisterForEvents("TestEventID", FireEventDebugLog);
 }

 void FireEventDebugLog(KoreographyEvent koreoEvent)
 {
 Debug.Log("Koreography Event Fired.");
 }
}

Copyright © 2020 Sonic Bloom, LLC 13 | Page

Running and Testing the Koreographer Functionality

17. Now that we are back in Unity, we can test to make sure our events are being received. Press the Play
button.

Unity’s Play Scene button

As the audio plays and events are fired you should see log statements appear in the console from the
TestEventSubscriber.

Watch the console for the Debug Output!

Copyright © 2020 Sonic Bloom, LLC 14 | Page

