WXMC/.svn/pristine/0b/0be5e3d96ba49f04782c31186365d94b0ff38585.svn-base
2024-12-04 16:18:46 +08:00

418 lines
11 KiB
Plaintext

// Upgrade NOTE: upgraded instancing buffer 'PerDrawSprite' to new syntax.
#ifndef SHADER_SHARED_INCLUDED
#define SHADER_SHARED_INCLUDED
#if defined(USE_LWRP)
#include "Packages/com.unity.render-pipelines.lightweight/ShaderLibrary/Core.hlsl"
#elif defined(USE_URP)
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
#else
#include "UnityCG.cginc"
#endif
////////////////////////////////////////
// Space functions
//
inline float4 calculateWorldPos(float4 vertex)
{
return mul(unity_ObjectToWorld, vertex);
}
#if defined(USE_LWRP) || defined(USE_URP)
// snaps post-transformed position to screen pixels
inline float4 UnityPixelSnap(float4 pos)
{
float2 hpc = _ScreenParams.xy * 0.5f;
#if SHADER_API_PSSL
// sdk 4.5 splits round into v_floor_f32(x+0.5) ... sdk 5.0 uses v_rndne_f32, for compatabilty we use the 4.5 version
float2 temp = ((pos.xy / pos.w) * hpc) + float2(0.5f, 0.5f);
float2 pixelPos = float2(__v_floor_f32(temp.x), __v_floor_f32(temp.y));
#else
float2 pixelPos = round((pos.xy / pos.w) * hpc);
#endif
pos.xy = pixelPos / hpc * pos.w;
return pos;
}
#endif
inline float4 calculateLocalPos(float4 vertex)
{
#if !defined(USE_LWRP) && !defined(USE_URP)
#ifdef UNITY_INSTANCING_ENABLED
vertex.xy *= _Flip.xy;
#endif
#endif
#if defined(USE_LWRP) || defined(USE_URP)
float4 pos = TransformObjectToHClip(vertex.xyz);
#else
float4 pos = UnityObjectToClipPos(vertex);
#endif
#ifdef PIXELSNAP_ON
pos = UnityPixelSnap(pos);
#endif
return pos;
}
inline half3 calculateWorldNormal(float3 normal)
{
#if defined(USE_LWRP) || defined(USE_URP)
return TransformObjectToWorldNormal(normal);
#else
return UnityObjectToWorldNormal(normal);
#endif
}
////////////////////////////////////////
// Normal map functions
//
#if defined(_NORMALMAP)
uniform sampler2D _BumpMap;
#if !defined(USE_LWRP) && !defined(USE_URP)
uniform half _BumpScale;
#endif
half3 UnpackScaleNormal(half4 packednormal, half bumpScale)
{
#if defined(UNITY_NO_DXT5nm)
return packednormal.xyz * 2 - 1;
#else
half3 normal;
normal.xy = (packednormal.wy * 2 - 1);
// Note: we allow scaled normals in LWRP since we might be using fewer instructions.
#if (SHADER_TARGET >= 30) || defined(USE_LWRP) || defined(USE_URP)
// SM2.0: instruction count limitation
// SM2.0: normal scaler is not supported
normal.xy *= bumpScale;
#endif
normal.z = sqrt(1.0 - saturate(dot(normal.xy, normal.xy)));
return normal;
#endif
}
inline half3 calculateWorldTangent(float4 tangent)
{
#if defined(USE_LWRP) || defined(USE_URP)
return TransformObjectToWorldDir(tangent.xyz);
#else
return UnityObjectToWorldDir(tangent);
#endif
}
inline half3 calculateWorldBinormal(half3 normalWorld, half3 tangentWorld, float tangentSign)
{
//When calculating the binormal we have to flip it when the mesh is scaled negatively.
//Normally this would just be unity_WorldTransformParams.w but this isn't set correctly by Unity for its SpriteRenderer meshes so get from objectToWorld matrix scale instead.
half worldTransformSign = sign(unity_ObjectToWorld[0][0] * unity_ObjectToWorld[1][1] * unity_ObjectToWorld[2][2]);
half sign = tangentSign * worldTransformSign;
return cross(normalWorld, tangentWorld) * sign;
}
inline half3 calculateNormalFromBumpMap(float2 texUV, half3 tangentWorld, half3 binormalWorld, half3 normalWorld)
{
half3 localNormal = UnpackScaleNormal(tex2D(_BumpMap, texUV), _BumpScale);
half3x3 rotation = half3x3(tangentWorld, binormalWorld, normalWorld);
half3 normal = normalize(mul(localNormal, rotation));
return normal;
}
#endif // _NORMALMAP
////////////////////////////////////////
// Blending functions
//
inline fixed4 prepareLitPixelForOutput(fixed4 finalPixel, fixed4 color) : SV_Target
{
#if defined(_ALPHABLEND_ON)
//Normal Alpha
finalPixel.rgb *= finalPixel.a;
#elif defined(_ALPHAPREMULTIPLY_ON)
//Pre multiplied alpha
finalPixel.rgb *= color.a;
#elif defined(_MULTIPLYBLEND)
//Multiply
finalPixel = lerp(fixed4(1,1,1,1), finalPixel, finalPixel.a);
#elif defined(_MULTIPLYBLEND_X2)
//Multiply x2
finalPixel.rgb *= 2.0f;
finalPixel = lerp(fixed4(0.5f,0.5f,0.5f,0.5f), finalPixel, finalPixel.a);
#elif defined(_ADDITIVEBLEND)
//Additive
finalPixel *= 2.0f;
finalPixel.rgb *= color.a;
#elif defined(_ADDITIVEBLEND_SOFT)
//Additive soft
finalPixel.rgb *= finalPixel.a;
#else
//Opaque
finalPixel.a = 1;
#endif
return finalPixel;
}
inline fixed4 calculateLitPixel(fixed4 texureColor, fixed4 color, fixed3 lighting) : SV_Target
{
fixed4 finalPixel = texureColor * color * fixed4(lighting, 1);
finalPixel = prepareLitPixelForOutput(finalPixel, color);
return finalPixel;
}
inline fixed4 calculateLitPixel(fixed4 texureColor, fixed3 lighting) : SV_Target
{
// note: we let the optimizer work, removed duplicate code.
return calculateLitPixel(texureColor, fixed4(1, 1, 1, 1), lighting);
}
inline fixed4 calculateAdditiveLitPixel(fixed4 texureColor, fixed4 color, fixed3 lighting) : SV_Target
{
fixed4 finalPixel;
#if defined(_ALPHABLEND_ON) || defined(_MULTIPLYBLEND) || defined(_MULTIPLYBLEND_X2) || defined(_ADDITIVEBLEND) || defined(_ADDITIVEBLEND_SOFT)
//Normal Alpha, Additive and Multiply modes
finalPixel.rgb = (texureColor.rgb * lighting * color.rgb) * (texureColor.a * color.a);
finalPixel.a = 1.0;
#elif defined(_ALPHAPREMULTIPLY_ON)
//Pre multiplied alpha
finalPixel.rgb = texureColor.rgb * lighting * color.rgb * color.a;
finalPixel.a = 1.0;
#else
//Opaque
finalPixel.rgb = texureColor.rgb * lighting * color.rgb;
finalPixel.a = 1.0;
#endif
return finalPixel;
}
inline fixed4 calculateAdditiveLitPixel(fixed4 texureColor, fixed3 lighting) : SV_Target
{
fixed4 finalPixel;
#if defined(_ALPHABLEND_ON) || defined(_MULTIPLYBLEND) || defined(_MULTIPLYBLEND_X2) || defined(_ADDITIVEBLEND) || defined(_ADDITIVEBLEND_SOFT)
//Normal Alpha, Additive and Multiply modes
finalPixel.rgb = (texureColor.rgb * lighting) * texureColor.a;
finalPixel.a = 1.0;
#else
//Pre multiplied alpha and Opaque
finalPixel.rgb = texureColor.rgb * lighting;
finalPixel.a = 1.0;
#endif
return finalPixel;
}
inline fixed4 calculatePixel(fixed4 texureColor, fixed4 color) : SV_Target
{
// note: we let the optimizer work, removed duplicate code.
return calculateLitPixel(texureColor, color, fixed3(1, 1, 1));
}
inline fixed4 calculatePixel(fixed4 texureColor) : SV_Target
{
// note: we let the optimizer work, removed duplicate code.
return calculateLitPixel(texureColor, fixed4(1, 1, 1, 1), fixed3(1, 1, 1));
}
////////////////////////////////////////
// Alpha Clipping
//
#if defined(_ALPHA_CLIP)
#if !defined(USE_LWRP) && !defined(USE_URP)
uniform fixed _Cutoff;
#endif
#define ALPHA_CLIP(pixel, color) clip((pixel.a * color.a) - _Cutoff);
#else
#define ALPHA_CLIP(pixel, color)
#endif
////////////////////////////////////////
// Additive Slot blend mode
// return unlit textureColor, alpha clip textureColor.a only
//
#if defined(_ALPHAPREMULTIPLY_ON)
#define RETURN_UNLIT_IF_ADDITIVE_SLOT(textureColor, vertexColor) \
if (vertexColor.a == 0 && (vertexColor.r || vertexColor.g || vertexColor.b)) {\
ALPHA_CLIP(texureColor, fixed4(1, 1, 1, 1))\
return texureColor * vertexColor;\
}
#else
#define RETURN_UNLIT_IF_ADDITIVE_SLOT(textureColor, vertexColor)
#endif
////////////////////////////////////////
// Color functions
//
#if !defined(USE_LWRP) && !defined(USE_URP)
uniform fixed4 _Color;
#endif
inline fixed4 calculateVertexColor(fixed4 color)
{
return color * _Color;
}
#if defined(_COLOR_ADJUST)
#if !defined(USE_LWRP) && !defined(USE_URP)
uniform float _Hue;
uniform float _Saturation;
uniform float _Brightness;
uniform fixed4 _OverlayColor;
#endif
float3 rgb2hsv(float3 c)
{
float4 K = float4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
float4 p = lerp(float4(c.bg, K.wz), float4(c.gb, K.xy), step(c.b, c.g));
float4 q = lerp(float4(p.xyw, c.r), float4(c.r, p.yzx), step(p.x, c.r));
float d = q.x - min(q.w, q.y);
float e = 1.0e-10;
return float3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}
float3 hsv2rgb(float3 c)
{
c = float3(c.x, clamp(c.yz, 0.0, 1.0));
float4 K = float4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
float3 p = abs(frac(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * lerp(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
inline fixed4 adjustColor(fixed4 color)
{
float3 hsv = rgb2hsv(color.rgb);
hsv.x += _Hue;
hsv.y *= _Saturation;
hsv.z *= _Brightness;
color.rgb = hsv2rgb(hsv);
return color;
}
#define COLORISE(pixel) pixel.rgb = lerp(pixel.rgb, _OverlayColor.rgb, _OverlayColor.a * pixel.a);
#define COLORISE_ADDITIVE(pixel) pixel.rgb = ((1.0-_OverlayColor.a) * pixel.rgb);
#else // !_COLOR_ADJUST
#define COLORISE(pixel)
#define COLORISE_ADDITIVE(pixel)
#endif // !_COLOR_ADJUST
////////////////////////////////////////
// Fog
//
#if defined(_FOG) && (defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2))
inline fixed4 applyFog(fixed4 pixel, float fogCoordOrFactorAtLWRP)
{
#if defined(_ADDITIVEBLEND) || defined(_ADDITIVEBLEND_SOFT)
//In additive mode blend from clear to black based on luminance
float luminance = pixel.r * 0.3 + pixel.g * 0.59 + pixel.b * 0.11;
fixed4 fogColor = lerp(fixed4(0,0,0,0), fixed4(0,0,0,1), luminance);
#elif defined(_MULTIPLYBLEND)
//In multiplied mode fade to white based on inverse luminance
float luminance = pixel.r * 0.3 + pixel.g * 0.59 + pixel.b * 0.11;
fixed4 fogColor = lerp(fixed4(1,1,1,1), fixed4(0,0,0,0), luminance);
#elif defined(_MULTIPLYBLEND_X2)
//In multipliedx2 mode fade to grey based on inverse luminance
float luminance = pixel.r * 0.3 + pixel.g * 0.59 + pixel.b * 0.11;
fixed4 fogColor = lerp(fixed4(0.5f,0.5f,0.5f,0.5f), fixed4(0,0,0,0), luminance);
#elif defined(_ALPHABLEND_ON) || defined(_ALPHAPREMULTIPLY_ON)
//In alpha blended modes blend to fog color based on pixel alpha
fixed4 fogColor = lerp(fixed4(0,0,0,0), unity_FogColor, pixel.a);
#else
//In opaque mode just return fog color;
fixed4 fogColor = unity_FogColor;
#endif
#if defined(USE_LWRP) || defined(USE_URP)
pixel.rgb = MixFogColor(pixel.rgb, fogColor.rgb, fogCoordOrFactorAtLWRP);
#else
UNITY_APPLY_FOG_COLOR(fogCoordOrFactorAtLWRP, pixel, fogColor);
#endif
return pixel;
}
#define APPLY_FOG(pixel, input) pixel = applyFog(pixel, input.fogCoord);
#define APPLY_FOG_LWRP(pixel, fogFactor) pixel = applyFog(pixel, fogFactor);
#define APPLY_FOG_ADDITIVE(pixel, input) \
UNITY_APPLY_FOG_COLOR(input.fogCoord, pixel.rgb, fixed4(0,0,0,0)); // fog towards black in additive pass
#else
#define APPLY_FOG(pixel, input)
#define APPLY_FOG_LWRP(pixel, fogFactor)
#define APPLY_FOG_ADDITIVE(pixel, input)
#endif
////////////////////////////////////////
// Texture functions
//
uniform sampler2D _MainTex;
#if _TEXTURE_BLEND
uniform sampler2D _BlendTex;
#if !defined(USE_LWRP) && !defined(USE_URP)
uniform float _BlendAmount;
#endif
inline fixed4 calculateBlendedTexturePixel(float2 texcoord)
{
return (1.0-_BlendAmount) * tex2D(_MainTex, texcoord) + _BlendAmount * tex2D(_BlendTex, texcoord);
}
#endif // _TEXTURE_BLEND
inline fixed4 calculateTexturePixel(float2 texcoord)
{
fixed4 pixel;
#if _TEXTURE_BLEND
pixel = calculateBlendedTexturePixel(texcoord);
#else
pixel = tex2D(_MainTex, texcoord);
#endif // !_TEXTURE_BLEND
#if defined(_COLOR_ADJUST)
pixel = adjustColor(pixel);
#endif // _COLOR_ADJUST
return pixel;
}
#if !defined(USE_LWRP) && !defined(USE_URP)
uniform fixed4 _MainTex_ST;
#endif
inline float2 calculateTextureCoord(float4 texcoord)
{
return TRANSFORM_TEX(texcoord, _MainTex);
}
#endif // SHADER_SHARED_INCLUDED