_TheStrongestSnail/TheStrongestSnail/Assets/Spine/Runtime/spine-csharp/Bone.cs

459 lines
18 KiB
C#
Raw Normal View History

2024-11-12 14:06:34 +08:00
/******************************************************************************
* Spine Runtimes License Agreement
* Last updated July 28, 2023. Replaces all prior versions.
*
* Copyright (c) 2013-2023, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software or
* otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE
* SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
using System;
namespace Spine {
using Physics = Skeleton.Physics;
/// <summary>
/// Stores a bone's current pose.
/// <para>
/// A bone has a local transform which is used to compute its world transform. A bone also has an applied transform, which is a
/// local transform that can be applied to compute the world transform. The local transform and applied transform may differ if a
/// constraint or application code modifies the world transform after it was computed from the local transform.
/// </para>
/// </summary>
public class Bone : IUpdatable {
static public bool yDown;
internal BoneData data;
internal Skeleton skeleton;
internal Bone parent;
internal ExposedList<Bone> children = new ExposedList<Bone>();
internal float x, y, rotation, scaleX, scaleY, shearX, shearY;
internal float ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY;
internal float a, b, worldX;
internal float c, d, worldY;
internal Inherit inherit;
internal bool sorted, active;
public BoneData Data { get { return data; } }
public Skeleton Skeleton { get { return skeleton; } }
public Bone Parent { get { return parent; } }
public ExposedList<Bone> Children { get { return children; } }
public bool Active { get { return active; } }
/// <summary>The local X translation.</summary>
public float X { get { return x; } set { x = value; } }
/// <summary>The local Y translation.</summary>
public float Y { get { return y; } set { y = value; } }
/// <summary>The local rotation.</summary>
public float Rotation { get { return rotation; } set { rotation = value; } }
/// <summary>The local scaleX.</summary>
public float ScaleX { get { return scaleX; } set { scaleX = value; } }
/// <summary>The local scaleY.</summary>
public float ScaleY { get { return scaleY; } set { scaleY = value; } }
/// <summary>The local shearX.</summary>
public float ShearX { get { return shearX; } set { shearX = value; } }
/// <summary>The local shearY.</summary>
public float ShearY { get { return shearY; } set { shearY = value; } }
/// <summary>Controls how parent world transforms affect this bone.</summary>
public Inherit Inherit { get { return inherit; } set { inherit = value; } }
/// <summary>The rotation, as calculated by any constraints.</summary>
public float AppliedRotation { get { return arotation; } set { arotation = value; } }
/// <summary>The applied local x translation.</summary>
public float AX { get { return ax; } set { ax = value; } }
/// <summary>The applied local y translation.</summary>
public float AY { get { return ay; } set { ay = value; } }
/// <summary>The applied local scaleX.</summary>
public float AScaleX { get { return ascaleX; } set { ascaleX = value; } }
/// <summary>The applied local scaleY.</summary>
public float AScaleY { get { return ascaleY; } set { ascaleY = value; } }
/// <summary>The applied local shearX.</summary>
public float AShearX { get { return ashearX; } set { ashearX = value; } }
/// <summary>The applied local shearY.</summary>
public float AShearY { get { return ashearY; } set { ashearY = value; } }
/// <summary>Part of the world transform matrix for the X axis. If changed, <see cref="UpdateAppliedTransform()"/> should be called.</summary>
public float A { get { return a; } set { a = value; } }
/// <summary>Part of the world transform matrix for the Y axis. If changed, <see cref="UpdateAppliedTransform()"/> should be called.</summary>
public float B { get { return b; } set { b = value; } }
/// <summary>Part of the world transform matrix for the X axis. If changed, <see cref="UpdateAppliedTransform()"/> should be called.</summary>
public float C { get { return c; } set { c = value; } }
/// <summary>Part of the world transform matrix for the Y axis. If changed, <see cref="UpdateAppliedTransform()"/> should be called.</summary>
public float D { get { return d; } set { d = value; } }
/// <summary>The world X position. If changed, <see cref="UpdateAppliedTransform()"/> should be called.</summary>
public float WorldX { get { return worldX; } set { worldX = value; } }
/// <summary>The world Y position. If changed, <see cref="UpdateAppliedTransform()"/> should be called.</summary>
public float WorldY { get { return worldY; } set { worldY = value; } }
/// <summary>The world rotation for the X axis, calculated using <see cref="a"/> and <see cref="c"/>.</summary>
public float WorldRotationX { get { return MathUtils.Atan2Deg(c, a); } }
/// <summary>The world rotation for the Y axis, calculated using <see cref="b"/> and <see cref="d"/>.</summary>
public float WorldRotationY { get { return MathUtils.Atan2Deg(d, b); } }
/// <summary>Returns the magnitide (always positive) of the world scale X.</summary>
public float WorldScaleX { get { return (float)Math.Sqrt(a * a + c * c); } }
/// <summary>Returns the magnitide (always positive) of the world scale Y.</summary>
public float WorldScaleY { get { return (float)Math.Sqrt(b * b + d * d); } }
public Bone (BoneData data, Skeleton skeleton, Bone parent) {
if (data == null) throw new ArgumentNullException("data", "data cannot be null.");
if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null.");
this.data = data;
this.skeleton = skeleton;
this.parent = parent;
SetToSetupPose();
}
/// <summary>Copy constructor. Does not copy the <see cref="Children"/> bones.</summary>
/// <param name="parent">May be null.</param>
public Bone (Bone bone, Skeleton skeleton, Bone parent) {
if (bone == null) throw new ArgumentNullException("bone", "bone cannot be null.");
if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null.");
this.skeleton = skeleton;
this.parent = parent;
data = bone.data;
x = bone.x;
y = bone.y;
rotation = bone.rotation;
scaleX = bone.scaleX;
scaleY = bone.scaleY;
shearX = bone.shearX;
shearY = bone.shearY;
inherit = bone.inherit;
}
/// <summary>Computes the world transform using the parent bone and this bone's local applied transform.</summary>
public void Update (Physics physics) {
UpdateWorldTransform(ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY);
}
/// <summary>Computes the world transform using the parent bone and this bone's local transform.</summary>
public void UpdateWorldTransform () {
UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY);
}
/// <summary>Computes the world transform using the parent bone and the specified local transform. The applied transform is set to the
/// specified local transform. Child bones are not updated.
/// <para>
/// See <a href="http://esotericsoftware.com/spine-runtime-skeletons#World-transforms">World transforms</a> in the Spine
/// Runtimes Guide.</para></summary>
public void UpdateWorldTransform (float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) {
ax = x;
ay = y;
arotation = rotation;
ascaleX = scaleX;
ascaleY = scaleY;
ashearX = shearX;
ashearY = shearY;
Bone parent = this.parent;
if (parent == null) { // Root bone.
Skeleton skeleton = this.skeleton;
float sx = skeleton.scaleX, sy = skeleton.ScaleY;
float rx = (rotation + shearX) * MathUtils.DegRad;
float ry = (rotation + 90 + shearY) * MathUtils.DegRad;
a = (float)Math.Cos(rx) * scaleX * sx;
b = (float)Math.Cos(ry) * scaleY * sx;
c = (float)Math.Sin(rx) * scaleX * sy;
d = (float)Math.Sin(ry) * scaleY * sy;
worldX = x * sx + skeleton.x;
worldY = y * sy + skeleton.y;
return;
}
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
worldX = pa * x + pb * y + parent.worldX;
worldY = pc * x + pd * y + parent.worldY;
switch (inherit) {
case Inherit.Normal: {
float rx = (rotation + shearX) * MathUtils.DegRad;
float ry = (rotation + 90 + shearY) * MathUtils.DegRad;
float la = (float)Math.Cos(rx) * scaleX;
float lb = (float)Math.Cos(ry) * scaleY;
float lc = (float)Math.Sin(rx) * scaleX;
float ld = (float)Math.Sin(ry) * scaleY;
a = pa * la + pb * lc;
b = pa * lb + pb * ld;
c = pc * la + pd * lc;
d = pc * lb + pd * ld;
return;
}
case Inherit.OnlyTranslation: {
float rx = (rotation + shearX) * MathUtils.DegRad;
float ry = (rotation + 90 + shearY) * MathUtils.DegRad;
a = (float)Math.Cos(rx) * scaleX;
b = (float)Math.Cos(ry) * scaleY;
c = (float)Math.Sin(rx) * scaleX;
d = (float)Math.Sin(ry) * scaleY;
break;
}
case Inherit.NoRotationOrReflection: {
float sx = 1 / skeleton.scaleX, sy = 1 / skeleton.ScaleY;
pa *= sx;
pc *= sy;
float s = pa * pa + pc * pc, prx;
if (s > 0.0001f) {
s = Math.Abs(pa * pd * sy - pb * sx * pc) / s;
pb = pc * s;
pd = pa * s;
prx = MathUtils.Atan2Deg(pc, pa);
} else {
pa = 0;
pc = 0;
prx = 90 - MathUtils.Atan2Deg(pd, pb);
}
float rx = (rotation + shearX - prx) * MathUtils.DegRad;
float ry = (rotation + shearY - prx + 90) * MathUtils.DegRad;
float la = (float)Math.Cos(rx) * scaleX;
float lb = (float)Math.Cos(ry) * scaleY;
float lc = (float)Math.Sin(rx) * scaleX;
float ld = (float)Math.Sin(ry) * scaleY;
a = pa * la - pb * lc;
b = pa * lb - pb * ld;
c = pc * la + pd * lc;
d = pc * lb + pd * ld;
break;
}
case Inherit.NoScale:
case Inherit.NoScaleOrReflection: {
rotation *= MathUtils.DegRad;
float cos = (float)Math.Cos(rotation), sin = (float)Math.Sin(rotation);
float za = (pa * cos + pb * sin) / skeleton.scaleX;
float zc = (pc * cos + pd * sin) / skeleton.ScaleY;
float s = (float)Math.Sqrt(za * za + zc * zc);
if (s > 0.00001f) s = 1 / s;
za *= s;
zc *= s;
s = (float)Math.Sqrt(za * za + zc * zc);
if (inherit == Inherit.NoScale && (pa * pd - pb * pc < 0) != (skeleton.scaleX < 0 != skeleton.ScaleY < 0)) s = -s;
rotation = MathUtils.PI / 2 + MathUtils.Atan2(zc, za);
float zb = (float)Math.Cos(rotation) * s;
float zd = (float)Math.Sin(rotation) * s;
shearX *= MathUtils.DegRad;
shearY = (90 + shearY) * MathUtils.DegRad;
float la = (float)Math.Cos(shearX) * scaleX;
float lb = (float)Math.Cos(shearY) * scaleY;
float lc = (float)Math.Sin(shearX) * scaleX;
float ld = (float)Math.Sin(shearY) * scaleY;
a = za * la + zb * lc;
b = za * lb + zb * ld;
c = zc * la + zd * lc;
d = zc * lb + zd * ld;
break;
}
}
a *= skeleton.scaleX;
b *= skeleton.scaleX;
c *= skeleton.ScaleY;
d *= skeleton.ScaleY;
}
/// <summary>Sets this bone's local transform to the setup pose.</summary>
public void SetToSetupPose () {
BoneData data = this.data;
x = data.x;
y = data.y;
rotation = data.rotation;
scaleX = data.scaleX;
scaleY = data.ScaleY;
shearX = data.shearX;
shearY = data.shearY;
inherit = data.inherit;
}
/// <summary>
/// Computes the applied transform values from the world transform.
/// <para>
/// If the world transform is modified (by a constraint, <see cref="RotateWorld(float)"/>, etc) then this method should be called so
/// the applied transform matches the world transform. The applied transform may be needed by other code (eg to apply another
/// constraint).
/// </para><para>
/// Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. The applied transform after
/// calling this method is equivalent to the local transform used to compute the world transform, but may not be identical.
/// </para></summary>
public void UpdateAppliedTransform () {
Bone parent = this.parent;
if (parent == null) {
ax = worldX - skeleton.x;
ay = worldY - skeleton.y;
float a = this.a, b = this.b, c = this.c, d = this.d;
arotation = MathUtils.Atan2Deg(c, a);
ascaleX = (float)Math.Sqrt(a * a + c * c);
ascaleY = (float)Math.Sqrt(b * b + d * d);
ashearX = 0;
ashearY = MathUtils.Atan2Deg(a * b + c * d, a * d - b * c);
return;
}
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
float pid = 1 / (pa * pd - pb * pc);
float ia = pd * pid, ib = pb * pid, ic = pc * pid, id = pa * pid;
float dx = worldX - parent.worldX, dy = worldY - parent.worldY;
ax = (dx * ia - dy * ib);
ay = (dy * id - dx * ic);
float ra, rb, rc, rd;
if (inherit == Inherit.OnlyTranslation) {
ra = a;
rb = b;
rc = c;
rd = d;
} else {
switch (inherit) {
case Inherit.NoRotationOrReflection: {
float s = Math.Abs(pa * pd - pb * pc) / (pa * pa + pc * pc);
float skeletonScaleY = skeleton.ScaleY;
pb = -pc * skeleton.scaleX * s / skeletonScaleY;
pd = pa * skeletonScaleY * s / skeleton.scaleX;
pid = 1 / (pa * pd - pb * pc);
ia = pd * pid;
ib = pb * pid;
break;
}
case Inherit.NoScale:
case Inherit.NoScaleOrReflection: {
float r = rotation * MathUtils.DegRad, cos = (float)Math.Cos(r), sin = (float)Math.Sin(r);
pa = (pa * cos + pb * sin) / skeleton.scaleX;
pc = (pc * cos + pd * sin) / skeleton.ScaleY;
float s = (float)Math.Sqrt(pa * pa + pc * pc);
if (s > 0.00001f) s = 1 / s;
pa *= s;
pc *= s;
s = (float)Math.Sqrt(pa * pa + pc * pc);
if (inherit == Inherit.NoScale && pid < 0 != (skeleton.scaleX < 0 != skeleton.ScaleY < 0)) s = -s;
r = MathUtils.PI / 2 + MathUtils.Atan2(pc, pa);
pb = (float)Math.Cos(r) * s;
pd = (float)Math.Sin(r) * s;
pid = 1 / (pa * pd - pb * pc);
ia = pd * pid;
ib = pb * pid;
ic = pc * pid;
id = pa * pid;
break;
}
}
ra = ia * a - ib * c;
rb = ia * b - ib * d;
rc = id * c - ic * a;
rd = id * d - ic * b;
}
ashearX = 0;
ascaleX = (float)Math.Sqrt(ra * ra + rc * rc);
if (ascaleX > 0.0001f) {
float det = ra * rd - rb * rc;
ascaleY = det / ascaleX;
ashearY = -MathUtils.Atan2Deg(ra * rb + rc * rd, det);
arotation = MathUtils.Atan2Deg(rc, ra);
} else {
ascaleX = 0;
ascaleY = (float)Math.Sqrt(rb * rb + rd * rd);
ashearY = 0;
arotation = 90 - MathUtils.Atan2Deg(rd, rb);
}
}
/// <summary>Transforms a point from world coordinates to the bone's local coordinates.</summary>
public void WorldToLocal (float worldX, float worldY, out float localX, out float localY) {
float a = this.a, b = this.b, c = this.c, d = this.d;
float det = a * d - b * c;
float x = worldX - this.worldX, y = worldY - this.worldY;
localX = (x * d - y * b) / det;
localY = (y * a - x * c) / det;
}
/// <summary>Transforms a point from the bone's local coordinates to world coordinates.</summary>
public void LocalToWorld (float localX, float localY, out float worldX, out float worldY) {
worldX = localX * a + localY * b + this.worldX;
worldY = localX * c + localY * d + this.worldY;
}
/// <summary>Transforms a point from world coordinates to the parent bone's local coordinates.</summary>
public void WorldToParent (float worldX, float worldY, out float parentX, out float parentY) {
if (parent == null) {
parentX = worldX;
parentY = worldY;
} else {
parent.WorldToLocal(worldX, worldY, out parentX, out parentY);
}
}
/// <summary>Transforms a point from the parent bone's coordinates to world coordinates.</summary>
public void ParentToWorld (float parentX, float parentY, out float worldX, out float worldY) {
if (parent == null) {
worldX = parentX;
worldY = parentY;
} else {
parent.LocalToWorld(parentX, parentY, out worldX, out worldY);
}
}
/// <summary>Transforms a world rotation to a local rotation.</summary>
public float WorldToLocalRotation (float worldRotation) {
worldRotation *= MathUtils.DegRad;
float sin = (float)Math.Sin(worldRotation), cos = (float)Math.Cos(worldRotation);
return MathUtils.Atan2Deg(a * sin - c * cos, d * cos - b * sin) + rotation - shearX;
}
/// <summary>Transforms a local rotation to a world rotation.</summary>
public float LocalToWorldRotation (float localRotation) {
localRotation = (localRotation - rotation - shearX) * MathUtils.DegRad;
float sin = (float)Math.Sin(localRotation), cos = (float)Math.Cos(localRotation);
return MathUtils.Atan2Deg(cos * c + sin * d, cos * a + sin * b);
}
/// <summary>
/// Rotates the world transform the specified amount.
/// <para>
/// After changes are made to the world transform, <see cref="UpdateAppliedTransform()"/> should be called and
/// <see cref="Update(Skeleton.Physics)"/> will need to be called on any child bones, recursively.
/// </para></summary>
public void RotateWorld (float degrees) {
degrees *= MathUtils.DegRad;
float sin = (float)Math.Sin(degrees), cos = (float)Math.Cos(degrees);
float ra = a, rb = b;
a = cos * ra - sin * c;
b = cos * rb - sin * d;
c = sin * ra + cos * c;
d = sin * rb + cos * d;
}
override public string ToString () {
return data.name;
}
}
}