/****************************************************************************** * Spine Runtimes License Agreement * Last updated July 28, 2023. Replaces all prior versions. * * Copyright (c) 2013-2023, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software or * otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE * SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ using System; namespace Spine { using Physics = Skeleton.Physics; /// /// Stores a bone's current pose. /// /// A bone has a local transform which is used to compute its world transform. A bone also has an applied transform, which is a /// local transform that can be applied to compute the world transform. The local transform and applied transform may differ if a /// constraint or application code modifies the world transform after it was computed from the local transform. /// /// public class Bone : IUpdatable { static public bool yDown; internal BoneData data; internal Skeleton skeleton; internal Bone parent; internal ExposedList children = new ExposedList(); internal float x, y, rotation, scaleX, scaleY, shearX, shearY; internal float ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY; internal float a, b, worldX; internal float c, d, worldY; internal Inherit inherit; internal bool sorted, active; public BoneData Data { get { return data; } } public Skeleton Skeleton { get { return skeleton; } } public Bone Parent { get { return parent; } } public ExposedList Children { get { return children; } } public bool Active { get { return active; } } /// The local X translation. public float X { get { return x; } set { x = value; } } /// The local Y translation. public float Y { get { return y; } set { y = value; } } /// The local rotation. public float Rotation { get { return rotation; } set { rotation = value; } } /// The local scaleX. public float ScaleX { get { return scaleX; } set { scaleX = value; } } /// The local scaleY. public float ScaleY { get { return scaleY; } set { scaleY = value; } } /// The local shearX. public float ShearX { get { return shearX; } set { shearX = value; } } /// The local shearY. public float ShearY { get { return shearY; } set { shearY = value; } } /// Controls how parent world transforms affect this bone. public Inherit Inherit { get { return inherit; } set { inherit = value; } } /// The rotation, as calculated by any constraints. public float AppliedRotation { get { return arotation; } set { arotation = value; } } /// The applied local x translation. public float AX { get { return ax; } set { ax = value; } } /// The applied local y translation. public float AY { get { return ay; } set { ay = value; } } /// The applied local scaleX. public float AScaleX { get { return ascaleX; } set { ascaleX = value; } } /// The applied local scaleY. public float AScaleY { get { return ascaleY; } set { ascaleY = value; } } /// The applied local shearX. public float AShearX { get { return ashearX; } set { ashearX = value; } } /// The applied local shearY. public float AShearY { get { return ashearY; } set { ashearY = value; } } /// Part of the world transform matrix for the X axis. If changed, should be called. public float A { get { return a; } set { a = value; } } /// Part of the world transform matrix for the Y axis. If changed, should be called. public float B { get { return b; } set { b = value; } } /// Part of the world transform matrix for the X axis. If changed, should be called. public float C { get { return c; } set { c = value; } } /// Part of the world transform matrix for the Y axis. If changed, should be called. public float D { get { return d; } set { d = value; } } /// The world X position. If changed, should be called. public float WorldX { get { return worldX; } set { worldX = value; } } /// The world Y position. If changed, should be called. public float WorldY { get { return worldY; } set { worldY = value; } } /// The world rotation for the X axis, calculated using and . public float WorldRotationX { get { return MathUtils.Atan2Deg(c, a); } } /// The world rotation for the Y axis, calculated using and . public float WorldRotationY { get { return MathUtils.Atan2Deg(d, b); } } /// Returns the magnitide (always positive) of the world scale X. public float WorldScaleX { get { return (float)Math.Sqrt(a * a + c * c); } } /// Returns the magnitide (always positive) of the world scale Y. public float WorldScaleY { get { return (float)Math.Sqrt(b * b + d * d); } } public Bone (BoneData data, Skeleton skeleton, Bone parent) { if (data == null) throw new ArgumentNullException("data", "data cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null."); this.data = data; this.skeleton = skeleton; this.parent = parent; SetToSetupPose(); } /// Copy constructor. Does not copy the bones. /// May be null. public Bone (Bone bone, Skeleton skeleton, Bone parent) { if (bone == null) throw new ArgumentNullException("bone", "bone cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null."); this.skeleton = skeleton; this.parent = parent; data = bone.data; x = bone.x; y = bone.y; rotation = bone.rotation; scaleX = bone.scaleX; scaleY = bone.scaleY; shearX = bone.shearX; shearY = bone.shearY; inherit = bone.inherit; } /// Computes the world transform using the parent bone and this bone's local applied transform. public void Update (Physics physics) { UpdateWorldTransform(ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY); } /// Computes the world transform using the parent bone and this bone's local transform. public void UpdateWorldTransform () { UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY); } /// Computes the world transform using the parent bone and the specified local transform. The applied transform is set to the /// specified local transform. Child bones are not updated. /// /// See World transforms in the Spine /// Runtimes Guide. public void UpdateWorldTransform (float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) { ax = x; ay = y; arotation = rotation; ascaleX = scaleX; ascaleY = scaleY; ashearX = shearX; ashearY = shearY; Bone parent = this.parent; if (parent == null) { // Root bone. Skeleton skeleton = this.skeleton; float sx = skeleton.scaleX, sy = skeleton.ScaleY; float rx = (rotation + shearX) * MathUtils.DegRad; float ry = (rotation + 90 + shearY) * MathUtils.DegRad; a = (float)Math.Cos(rx) * scaleX * sx; b = (float)Math.Cos(ry) * scaleY * sx; c = (float)Math.Sin(rx) * scaleX * sy; d = (float)Math.Sin(ry) * scaleY * sy; worldX = x * sx + skeleton.x; worldY = y * sy + skeleton.y; return; } float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; worldX = pa * x + pb * y + parent.worldX; worldY = pc * x + pd * y + parent.worldY; switch (inherit) { case Inherit.Normal: { float rx = (rotation + shearX) * MathUtils.DegRad; float ry = (rotation + 90 + shearY) * MathUtils.DegRad; float la = (float)Math.Cos(rx) * scaleX; float lb = (float)Math.Cos(ry) * scaleY; float lc = (float)Math.Sin(rx) * scaleX; float ld = (float)Math.Sin(ry) * scaleY; a = pa * la + pb * lc; b = pa * lb + pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; return; } case Inherit.OnlyTranslation: { float rx = (rotation + shearX) * MathUtils.DegRad; float ry = (rotation + 90 + shearY) * MathUtils.DegRad; a = (float)Math.Cos(rx) * scaleX; b = (float)Math.Cos(ry) * scaleY; c = (float)Math.Sin(rx) * scaleX; d = (float)Math.Sin(ry) * scaleY; break; } case Inherit.NoRotationOrReflection: { float sx = 1 / skeleton.scaleX, sy = 1 / skeleton.ScaleY; pa *= sx; pc *= sy; float s = pa * pa + pc * pc, prx; if (s > 0.0001f) { s = Math.Abs(pa * pd * sy - pb * sx * pc) / s; pb = pc * s; pd = pa * s; prx = MathUtils.Atan2Deg(pc, pa); } else { pa = 0; pc = 0; prx = 90 - MathUtils.Atan2Deg(pd, pb); } float rx = (rotation + shearX - prx) * MathUtils.DegRad; float ry = (rotation + shearY - prx + 90) * MathUtils.DegRad; float la = (float)Math.Cos(rx) * scaleX; float lb = (float)Math.Cos(ry) * scaleY; float lc = (float)Math.Sin(rx) * scaleX; float ld = (float)Math.Sin(ry) * scaleY; a = pa * la - pb * lc; b = pa * lb - pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; break; } case Inherit.NoScale: case Inherit.NoScaleOrReflection: { rotation *= MathUtils.DegRad; float cos = (float)Math.Cos(rotation), sin = (float)Math.Sin(rotation); float za = (pa * cos + pb * sin) / skeleton.scaleX; float zc = (pc * cos + pd * sin) / skeleton.ScaleY; float s = (float)Math.Sqrt(za * za + zc * zc); if (s > 0.00001f) s = 1 / s; za *= s; zc *= s; s = (float)Math.Sqrt(za * za + zc * zc); if (inherit == Inherit.NoScale && (pa * pd - pb * pc < 0) != (skeleton.scaleX < 0 != skeleton.ScaleY < 0)) s = -s; rotation = MathUtils.PI / 2 + MathUtils.Atan2(zc, za); float zb = (float)Math.Cos(rotation) * s; float zd = (float)Math.Sin(rotation) * s; shearX *= MathUtils.DegRad; shearY = (90 + shearY) * MathUtils.DegRad; float la = (float)Math.Cos(shearX) * scaleX; float lb = (float)Math.Cos(shearY) * scaleY; float lc = (float)Math.Sin(shearX) * scaleX; float ld = (float)Math.Sin(shearY) * scaleY; a = za * la + zb * lc; b = za * lb + zb * ld; c = zc * la + zd * lc; d = zc * lb + zd * ld; break; } } a *= skeleton.scaleX; b *= skeleton.scaleX; c *= skeleton.ScaleY; d *= skeleton.ScaleY; } /// Sets this bone's local transform to the setup pose. public void SetToSetupPose () { BoneData data = this.data; x = data.x; y = data.y; rotation = data.rotation; scaleX = data.scaleX; scaleY = data.ScaleY; shearX = data.shearX; shearY = data.shearY; inherit = data.inherit; } /// /// Computes the applied transform values from the world transform. /// /// If the world transform is modified (by a constraint, , etc) then this method should be called so /// the applied transform matches the world transform. The applied transform may be needed by other code (eg to apply another /// constraint). /// /// Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. The applied transform after /// calling this method is equivalent to the local transform used to compute the world transform, but may not be identical. /// public void UpdateAppliedTransform () { Bone parent = this.parent; if (parent == null) { ax = worldX - skeleton.x; ay = worldY - skeleton.y; float a = this.a, b = this.b, c = this.c, d = this.d; arotation = MathUtils.Atan2Deg(c, a); ascaleX = (float)Math.Sqrt(a * a + c * c); ascaleY = (float)Math.Sqrt(b * b + d * d); ashearX = 0; ashearY = MathUtils.Atan2Deg(a * b + c * d, a * d - b * c); return; } float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; float pid = 1 / (pa * pd - pb * pc); float ia = pd * pid, ib = pb * pid, ic = pc * pid, id = pa * pid; float dx = worldX - parent.worldX, dy = worldY - parent.worldY; ax = (dx * ia - dy * ib); ay = (dy * id - dx * ic); float ra, rb, rc, rd; if (inherit == Inherit.OnlyTranslation) { ra = a; rb = b; rc = c; rd = d; } else { switch (inherit) { case Inherit.NoRotationOrReflection: { float s = Math.Abs(pa * pd - pb * pc) / (pa * pa + pc * pc); float skeletonScaleY = skeleton.ScaleY; pb = -pc * skeleton.scaleX * s / skeletonScaleY; pd = pa * skeletonScaleY * s / skeleton.scaleX; pid = 1 / (pa * pd - pb * pc); ia = pd * pid; ib = pb * pid; break; } case Inherit.NoScale: case Inherit.NoScaleOrReflection: { float r = rotation * MathUtils.DegRad, cos = (float)Math.Cos(r), sin = (float)Math.Sin(r); pa = (pa * cos + pb * sin) / skeleton.scaleX; pc = (pc * cos + pd * sin) / skeleton.ScaleY; float s = (float)Math.Sqrt(pa * pa + pc * pc); if (s > 0.00001f) s = 1 / s; pa *= s; pc *= s; s = (float)Math.Sqrt(pa * pa + pc * pc); if (inherit == Inherit.NoScale && pid < 0 != (skeleton.scaleX < 0 != skeleton.ScaleY < 0)) s = -s; r = MathUtils.PI / 2 + MathUtils.Atan2(pc, pa); pb = (float)Math.Cos(r) * s; pd = (float)Math.Sin(r) * s; pid = 1 / (pa * pd - pb * pc); ia = pd * pid; ib = pb * pid; ic = pc * pid; id = pa * pid; break; } } ra = ia * a - ib * c; rb = ia * b - ib * d; rc = id * c - ic * a; rd = id * d - ic * b; } ashearX = 0; ascaleX = (float)Math.Sqrt(ra * ra + rc * rc); if (ascaleX > 0.0001f) { float det = ra * rd - rb * rc; ascaleY = det / ascaleX; ashearY = -MathUtils.Atan2Deg(ra * rb + rc * rd, det); arotation = MathUtils.Atan2Deg(rc, ra); } else { ascaleX = 0; ascaleY = (float)Math.Sqrt(rb * rb + rd * rd); ashearY = 0; arotation = 90 - MathUtils.Atan2Deg(rd, rb); } } /// Transforms a point from world coordinates to the bone's local coordinates. public void WorldToLocal (float worldX, float worldY, out float localX, out float localY) { float a = this.a, b = this.b, c = this.c, d = this.d; float det = a * d - b * c; float x = worldX - this.worldX, y = worldY - this.worldY; localX = (x * d - y * b) / det; localY = (y * a - x * c) / det; } /// Transforms a point from the bone's local coordinates to world coordinates. public void LocalToWorld (float localX, float localY, out float worldX, out float worldY) { worldX = localX * a + localY * b + this.worldX; worldY = localX * c + localY * d + this.worldY; } /// Transforms a point from world coordinates to the parent bone's local coordinates. public void WorldToParent (float worldX, float worldY, out float parentX, out float parentY) { if (parent == null) { parentX = worldX; parentY = worldY; } else { parent.WorldToLocal(worldX, worldY, out parentX, out parentY); } } /// Transforms a point from the parent bone's coordinates to world coordinates. public void ParentToWorld (float parentX, float parentY, out float worldX, out float worldY) { if (parent == null) { worldX = parentX; worldY = parentY; } else { parent.LocalToWorld(parentX, parentY, out worldX, out worldY); } } /// Transforms a world rotation to a local rotation. public float WorldToLocalRotation (float worldRotation) { worldRotation *= MathUtils.DegRad; float sin = (float)Math.Sin(worldRotation), cos = (float)Math.Cos(worldRotation); return MathUtils.Atan2Deg(a * sin - c * cos, d * cos - b * sin) + rotation - shearX; } /// Transforms a local rotation to a world rotation. public float LocalToWorldRotation (float localRotation) { localRotation = (localRotation - rotation - shearX) * MathUtils.DegRad; float sin = (float)Math.Sin(localRotation), cos = (float)Math.Cos(localRotation); return MathUtils.Atan2Deg(cos * c + sin * d, cos * a + sin * b); } /// /// Rotates the world transform the specified amount. /// /// After changes are made to the world transform, should be called and /// will need to be called on any child bones, recursively. /// public void RotateWorld (float degrees) { degrees *= MathUtils.DegRad; float sin = (float)Math.Sin(degrees), cos = (float)Math.Cos(degrees); float ra = a, rb = b; a = cos * ra - sin * c; b = cos * rb - sin * d; c = sin * ra + cos * c; d = sin * rb + cos * d; } override public string ToString () { return data.name; } } }