

Graph Maker

Page 2 of 53

I. OVERVIEW 4

1.1 GOALS 4
1.2 FEATURES 4
1.3 FAQ 4
1.4 UPGRADE GUIDES 6

II. PIE GRAPHS 8

2.1 GETTING STARTED 8
2.2 CORE PARAMETERS 9
2.3 OTHER SLICE PARAMETERS 10
2.4 ANIMATION PARAMETERS 10
2.5 LABEL PARAMETERS 11
2.6 MISC PARAMETERS 11

III. LINE GRAPHS 12

3.1 GETTING STARTED 12
3.2 AXIS GRAPH CORE PARAMETERS 12
3.3 AXIS GRAPH AXIS PARAMETERS 15
3.4 AXIS GRAPH TOOLTIP PARAMETERS 17
3.5 AXIS GRAPH ANIMATION PARAMETERS 18
3.6 AXIS GRAPH MISC PARAMETERS 18
3.7 SERIES PARAMETERS 19
3.8 OTHER NOTES 22
3.9 ANIMATIONS 22
3.10 EVENTS 23
3.11 DYNAMICALLY ADD / DELETE SERIES 23
3.12 AREA SHADING 24
3.13 REAL-TIME UPDATING 25
3.14 DATA LABELS 25
3.15 DYNAMICALLY RESIZING 26
3.16 DUAL-Y AXIS 27

IV. BAR GRAPHS 28

4.1 GETTING STARTED 28
4.2 AXIS / SERIES GRAPH PARAMETERS 28

V. FUNCTIONS & MISC INFO 29

5.1 AXIS GRAPH FUNCTIONS 29
5.2 SERIES FUNCTIONS 29
5.3 GRAPH MANAGER FUNCTIONS 30
5.4 NODE FUNCTIONS 31
5.5 POPULATING DATA DYNAMICALLY VIA REFLECTION 31
5.6 LEGENDS 32
5.7 TEXTMESH PRO 34
5.8 CUSTOM TOOLTIPS AND DATALABELS 34

VI. SQUARE / RECT / HEX GRIDS 36

6.1 GETTING STARTED 36
6.2 PARAMETERS 37

VII. RANDOM GRAPHS 38

7.1 GETTING STARTED 38
7.2 PARAMETERS 38

VIII. HIERARCHICAL SKILL TREES 41

8.1 GETTING STARTED 41
8.2 SUMMARY 42
8.3 PARAMETERS 42

IX. RADAR GRAPHS 44

9.1 GETTING STARTED 44
9.2 SUMMARY 44
9.3 PARAMETERS 45

X. RING GRAPHS 47

Page 3 of 53

10.1 GETTING STARTED 47
10.2 SUMMARY 48
10.3 PARAMETERS 48

XI. BEZIER BAND GRAPHS 51

11.1 GETTING STARTED 51
11.2 SUMMARY 52
11.3 PARAMETERS 52

Page 4 of 53

I. Overview

1.1 Goals
The primary goal of this package is to make adding quality graph GUIs such as pie graphs, line graphs, and bar

graphs to your project very easy. The secondary goal is to allow a way to create graph based GUIs that don't

necessarily conform to a specific typical graph. Common use cases of these types of graphs include GUI objects

based on grids, trees, and maps.

1.2 Features

 Pie Graphs

 Line / Bar Graphs

 Radar Graphs

 Ring Graphs

 Random Graphs

 Quadrilateral / Hexagonal Grids

 Hierarchical Trees

 Bezier Band Graphs

 Customize visual aspects at run-time

1.3 FAQ

Q: Does Graph Maker work well with just Unity GUI system? I don't use NGUI, Text Mesh PRO, or other 3rd party

systems.

A: Yes! Graph Maker is designed and developed primarily for the Unity GUI system. Using the 3rd party systems

is completely optional.

Q: I dragged and dropped a Graph Maker prefab into an empty scene, and hit play, but I don't see anything?

A: Since Graph Maker uses the Unity UI system, all graphs (as well as other UI objects), must be a child of a

canvas. To create a canvas in your scene, go to Gameobject -> UI -> Canvas.

Q: I have some code that instantiates a graph and sets some graph properties. The graph gets created, but my

other code that set the graph properties did nothing?

A: Graph Maker relies on Start() being called, and Instantiate() doesn't call Start() immediately. For Graph

Maker, Start() calls a public Init() function, so just write some code to call Init() immediately after you instantiate

the graph, e.g. myGraph.Init(). Don't worry about Init() being called more than once, Graph Maker handles that.

Page 5 of 53

Q: How do I do my own custom stuff when I click or hover over a point or bar in a graph?

A: Write some code to subscribe to the appropriate Graph Maker event. For example, for clicks:

1.

2. public class GraphPointInteraction : MonoBehaviour {

3.

4. public WMG_Axis_Graph myGraph;

5.

6. void MyCustomFunction(WMG_Series series, WMG_Node node) {

7. Debug.Log("Node: " + node.name + " on series: " + series.name + " was clicked!");

8. }

9.

10. void Start() {

11. myGraph.WMG_Click += MyCustomFunction;

12. }

13.

14. }

Q: I set a list of vector2 for a series, and then looped through the gameobjects of the series using

WMG_Series.getPoints() to add my own custom script to the newly created point gameobjects, but it doesn't

look like my custom script got attached to the newly created gameobjects?

A: Short answer - call Refresh() on the graph immediately after setting the list of vector2. Long answer - Graph

Maker's refresh system looks at all the properties that changed (including lists), and applies the changes that

occurred in the Update() function. Since the changes get applied each frame in the Update() function, the

changes are not immediate, however you can make the changes apply immediately at anytime in your custom

code by calling the Refresh() function.

Q: My graph dimensions are driven based on Layout groups, and I notice a jitter when the graph resizes. Any

way to fix this?

A: Yes, add this code to WMG_Axis_Graph.cs

1. void OnRectTransformDimensionsChange () {

2. if (!hasInit) return;

3. updateFromResize();

4. Refresh();

5. }

Q: When I add 1,000 points I notice a big lag, any way to fix this?

A: First thing to check is whether "Area Shading" is enabled on your series. This functionality creates N-1 (where

N is your number of points) separate instanced materials with different shader properties set for each, and will

significantly slow things down. It is not recommended for graphs of a large number of points.

Second thing you can do is use a Coroutine to load your data overtime rather than all at once to avoid an initial

FPS hit.

Third thing is to consider reducing the number of points shown in your graph to have at least 5 pixels available

per point, otherwise you won't be able to see much. For example, if the graph has 800 pixels on the x-dimension

then 5 pixels per point will get you 800/5 = 160 points.

http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=MonoBehaviour
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=Debug
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=Log
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=name
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=name
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=Start
http://unity3d.com/support/documentation/ScriptReference/30_search.html?q=Refresh

Page 6 of 53

1.4 Upgrade Guides

Over the past few years Graph Maker has evolved substantially. It has become quite stable and feature-

complete. However, that doesn't mean there won't be more changes on the horizon that break or greatly

change existing behavior. On that note, this section serves as a guide to making old Graph Maker objects /

prefabs work with the newest version of Graph Maker. The idea is that by following these upgrade guides

sequentially from one version to the next it will be possible to reproduce the latest version Graph Maker graph

from older versions of Graph Maker.

That said, if you plan on making quite a few various different Graph Maker prefabs; I recommend to generate

these prefabs from code. If you generate your prefabs from code you won't really even need to use this upgrade

guide. Instead, you could use your code that generates prefabs to generate prefabs from Graph Maker's latest

version prefab. Graph Maker itself actually creates all axis graph prefabs from one base prefab. That base prefab

is the "LineGraph.prefab". All the other axis graphs (scatter, bar, area shading, stacked line, etc.), are generated

dynamically from code from the Unity editor menu. This code is under Scripts/Editor/WMG_Prefab_Gen.cs

Upgrading from 1.5.x to 1.5.7

A) (Do this if you use x/y axis titles)

This upgrade changed how x/y-axis titles are positioned. Additionally, the x/y axis titles are parented to different

objects in the unity hierarchy. First thing is to move the x/y axis titles from being parented to the graph

background to being parented to the x/y-axis lines like so:

Next, the behavior of the x/y-axis title offset has changed to be based on the axis line. For example, the default

value of y-axis title offset was -40, but should be changed to something like 40 instead to be positively offset

away from the axis line.

B) (Do this if you plan to use the new dual-y axis chart functionality)

This upgrade also added a whole new secondary y-axis. First make a duplicate of the y-axis object, call it yaxis2

for clarity.

Next, references to various objects the axis use need to be set.

Page 7 of 53

Set references to the title, the ticks, the line, the top / bottom arrows, the axis object parent, and the labels. The

only reference to not set is the grid lines, grid lines are only controlled by the primary axis.

Note that you also need to create YAxisMarks2, and YAxisLabels2 gameobjects. You can just duplicate the

existing ones used for the original y-axis.

Lastly, on the graph itself under the "Misc" tab, set the reference to the secondary y-axis.

Upgrading from 1.4+ to 1.5+

For this upgrade, Graph Maker created a new separate class for axes. Any custom code you have that changes

axes parameters must be updated. For example, if you have code that says "myGraph.xAxisNumTicks = 5", then

the new code needs to be "myGraph.xAxis.NumTicks = 5".

Additionally all lists on graphs were changed to use a new custom list class that is observable and fires events

when elements are added or removed. You can call list functions as normal on Graph Maker lists, however there

is a special case for when setting the list directly to an entirely new list. For example, if you have code such as

"mySeries.PointValues = myList", this must now change to be "mySeries.PointValues.SetList(myList)"

Page 8 of 53

II. Pie Graphs

2.1 Getting Started
Drag and drop the PieGraph prefab from the Prefabs/Graphs folder into your scene:

The graph will appear when you play the scene:

Page 9 of 53

2.2 Core Parameters

- Resize Enabled / Resize Properties

When the rect transform width / height changes, this determines which pie graph elements resize as a result.

- Values

This is a list of floats for the actual data of the pie graph. The number of slices is affected by this parameter. For

example, if you entered 6 slice labels, but have only 5 values, only 5 slices will appear and the 6th label is

ignored.

- Labels

This is the list of strings to label the pie slices. This can appear in the legend, or in text overlaying the pie slices. If

the number of slice values is increased beyond what is specified then extra labels are automatically labeled but

default to the empty string. If the number of slice values is decreased beyond what is specified, then the extra

labels are not automatically deleted.

- Colors

This is the list of colors of the pie slices. This appears in the legend, and the pie slice itself. If the number of slice

values is increased beyond what is specified then extra colors are automatically added but default to the white

color. If the number of slice values is decreased beyond what is specified, then the extra colors are not

automatically deleted. No auto deletion is by design, so that you only need to create 1 large default color set for

your pie graph that will not be affected by the number of slices that can appear.

- Left / Right / Top / Bot Padding

Controls the padding of the background relative to the pie graph circle.

- Auto Center / Auto Center Min Padding

This ensure the pie graph and legend both stay in the center of its rect transform. This will automatically adjust

the background padding as well, using the Min Padding value as the absolute minimum for the padding.

- Bg Circle Offset

This controls the size of the background circle (behind the pie graph). For example, if this is 10, then the

background circle will exceed the borders of the pie graph slices by 10 pixels.

- Sort by

This controls the order that the pie slices appear. The default is Largest_First, meaning that the slice with the

highest value will appear in the top right, and subsequent slices go in clockwise order. The other sorting options

Page 10 of 53

should be intuitive based on the name. For the "None" sorting, the slice value corresponding to the 0 index of

the Values list appears in the top right corner.

- Swap Colors During Sort

When set to true, if the 3rd slice is green and the 3rd slice value gets increased so that it becomes the first slice

after sorting, then the green color will swap to be in the top right slice. If this is set to false, then the colors

remain static, meaning green will always be the third slice.

- Slice Label Type

Controls how the labels on the slices display.

- Explode Length

This is the radial distance the pie slices are from the center. A small value here usually enhances the visual

appeal of the graph.

- Explode Symmetrical

When the explode length is > 0, this determines whether the outer edge of the slices align.

- Doughnut Radius

This cuts out a circle of the specified radius from each slice. This can be useful for making doughnut graphs.

- Hide Zero Value Legend Entry

When set to true and the value of a slice is 0, this will hide that legend entry (and re-arrange the other legend

entries). When set to false, the legend entry will remain even though no slice will be visible.

2.3 Other Slice Parameters

- Limit number slices / max slices

When limit number slices is checked, the pie graph will limit the number of slices displayed to this specified

value. So if there are 10 values, and 3 is set then only 3 of those will be used, the 3 used depends on sorting.

- Include Others / Others Label / Others Color

When include others is checked, the slices that got excluded from limiting the number of slices will be lumped

into a single "Others" slice. So if you have 100 monsters in your game, and the player wants to see the top 10

monsters they've slain you could show the top 10 and include others, which could be labeled "Other Monsters"

and will include the sum of the other 90 monster data. This also needs to be given its own color defined by the

Others Color.

2.4 Animation Parameters

- Animation Duration / Sort Animation Duration

These parameters are for doing animated updates instead of instant updates. The animation for deleting pie

slices for changing pie slice data is to expand / contract the affected slices. The sorting animation only applies if

Page 11 of 53

the sort by parameter is set to something other than none, and the data was changed such that sorting would

rearrange the order of pie slices. The sorting animation shrinks and then expands all of the slices.

2.5 Label Parameters

- Slice Label Explode Length

This controls where the labels that overlay pie slices appear. A value of 0 corresponds with the outer edge of the

pie graph slices.

- Slice Label Font Size

Controls the font size of the pie slice labels.

- Number of decimals in percents

This controls the number of decimals displayed in the pie slice labels when a percent is displayed.

- Slice Label Color

The color of the slice labels

2.6 Misc Parameters

- Values / Labels / Colors Data Source

These reference a WMG_Data_Source script. This script can pull data dynamically via reflection to populate data

used in the graph.

- Legend

A reference to the legend. Refer to the legend section for info about customizing the legend.

- Slice Prefab

The prefab used to generate the slices. If you want a different look you can change out the sprite used here.

Page 12 of 53

III. Line Graphs

3.1 Getting Started
Drag and drop the LineGraph prefab from the Prefabs/Graphs folder into your scene:

The graph will appear when you play the scene:

3.2 Axis Graph Core Parameters

-Graph Type

Changes the graph type with one of the following options:

Page 13 of 53

-Orientation Type

Change the graph from vertical to horizontal. This is mostly useful for creating horizontal bar charts.

-Axes Type

Change the position of the axes based on a quadrant system. Can also set it to automatically update its position

to be closest to the origin.

Manual means Graph Maker will not do anything with regards to moving around the axes.

Roman numerals refer to the various quadrant possibilities.

DUAL_Y is for dual-y axis charts. See later section in this manual to learn more.

Auto origin will automatically position the axes to be closest to the origin. So if you change the axes min and max

values such that the axis would change its position, then the axes will automatically adjust to be closest to the

origin. The origin is also configurable via another parameter.

To get axes to not stick to a particular tick set the "Axis Use Non Tick Percent" to true.

- Resize Enabled / Resize Properties

Refer to the dynamic resize section.

- Use Groups / Groups

This option should be used if it is important to graph nulls (e.g. broken line segments), and / or to have axis

labels aligned with groups of bars or line points.

The list of groups is defined by the List<string> groups variable. The number of groups defined here controls how

many Vector2 values must be present for every series. The x value in each Vector2 corresponds with the index of

the group in the List<string> groups.

A function is run whenever the Vector2 list changes for a series that sanitizes the data when grouping is enabled.

This will, for example automatically insert nulls as necessary, and also combine duplicate groups. Note that nulls

are defined by a negative x value in each Vector2.

- Series

This is the list of gameobjects with a WMG_Series script attached. If nothing is specified here, then only the

graph axes and grids will display.

Page 14 of 53

- Padding left / right / top / bottom

This controls how the graph background is padded. If these were set to 0, the background would be the same as

the axis lengths, which should be the same as the width and height of the root gameobject. If, for example, the

legend is on the bottom, then you will likely want a larger bottom padding for the legend, unless you want the

legend to not be on the background.

- The Origin

This is the graph's origin. This will affect the behavior of the auto origin axes type options.

-Bar Width

This determines the width of the bars for the bar graphs. This is specified here instead of the series script, since

the bar widths should never vary across series. However, the same may not be true for line graph point sizing,

and so the parameter to control point sizes is on the series script.

- Bar Axis Value

This controls the starting point for bar charts. For example, if the y-axis min is 0 and y-axis max is 20, and this is

set to 10, then the base will start from 10 and either go up or down depending on the data set for each bar. So, a

bar representing a value of 5 will start from 10 and go down to 5, and a bar with a value of 15 will start from 10

and go up to 15.

- Auto Update Origin

This automatically sets the origin based on the axes type. For example, if axes type is quadrant I, and the min X

axis value is -100, and min Y value is 50, then the origin will be (-100, 50).

- Auto Update Bar Width

This updates the bar width when orientation changes based on the ratio of x and y axis lengths. For example if

the x axis length is twice the y axis length and the orientation is changed to horizontal, then the bar width will be

divided by 2. This also ensures bars don't overlap when dynamically adding series by reducing the bar width as

needed.

- Auto Update Bar Width Spacing

When auto update bar width is enabled, this automatically updates the bar width to be based on a certain

percentage of the graph's axis length. This ensures the total amount of space not occupied by bars is equal to

this percent. For example at 0.3, 30% of the space occupied by bars is empty space.

- Auto Update Series Axis Spacing

This automatically updates each series "Extra X Space" which is just a padding of space from the axis. For

example for line charts this will set it the extraXSpace to 0, so that the points stay on top of the axes, and for bar

graphs it is the amount of space between bars, so that the bars are evenly spaced from each other and from the

axes.

- Auto Update Bar Axis Value

This automatically sets the bar axis value to the origin x or y component depending on the graph's orientation.

- Auto Fit Labels / Auto Fit Padding

This is a work in progress feature, that will ensure labels do not cross the graph background border.

Page 15 of 53

3.3 Axis Graph Axis Parameters

- Axis Max and Min Values

This determines where each point / bar in a series gets positioned.

- Axis Num Ticks

This determines the number of ticks that appear on each axis. Each tick can also be associated with a tick label

and the gridlines are also aligned with the ticks. The minimum value is forced to be 1 to get around divide by 0

errors, so if 0 ticks are required, then simply navigate the hierarchy of the graph and disable the ticks. A

parameter may be added to do this later.

- Min / Max Auto Grow

If true, the absolute value of the corresponding axis value will automatically increase if any series data exceeds

the boundary. The increase amount is specified in another parameter in the Misc parameters.

- Min / Max Auto Shrink

If true, the absolute value of the corresponding axis value will automatically decrease if any series data is

significantly below the boundary. The decrease amount is specified in another parameter in the Misc

parameters. Also, the threshold at which the decrease happens is specified in another parameter in the Misc

parameters.

- Axis line padding

This controls how much more space is extended beyond the actual axis length for axis arrows. This will likely

depend on the size of your axis arrow sprite. If set to 0 then the arrow sprite would overlap with your maximum

axis tick which wouldn't look good.

-Hide Grids

This determines whether grid lines for this axis appear.

-Hide Ticks

This determines whether tick marks for this axis appear.

- Axis title string / offset / font size

The string displayed for x / y axis titles. The offsets control the position in relation to the axes. The font size

controls the font size of the axis titles.

- Axis Use Non Tick Percent

This positions the axes based on percentages rather than on fixed grid ticks. This should be enabled for the auto

origin axes types or the manual axis type. For auto origin axes type, this will move the axes around freely based

on the origin value.

Page 16 of 53

Label Parameters

- Label Type

Determines how many labels there are, and how they are positioned.

Ticks - There is exactly 1 label per axis tick, and the label is positioned next to the tick.

Ticks_center - There is exactly N - 1 labels where N is the number of ticks. Each label is centered between 2 ticks.

Groups - The number of labels matches the number of groups. The labels are positioned next to the points / bars

in this mode. Also, the labels pull from the List<string> groups variable.

Manual - The number of labels is based off the X/Y labels list, and positioning is based off the label spacing and

dist between variables.

- Labels

This is the actual list of axis labels. This is usually set automatically, or can be set manually in Manual Label Type

mode or manually in Ticks or Ticks_center Label Type mode when "Set Labels Using Max Min" is disabled.

- Axis Label Skip Interval

This determines how often a label is shown on the axes. For example at 0, all labels are shown, at 1, every other

label, and at 2 every other 2 labels.

-Axis Label Skip Start

This determines how many labels to skip at the start to show on the axes. A value of 1 will skip the first 1 label.

- Axis Label Rotation

Rotates the labels with the specified degrees.

- Set Labels Using Max Min

If this is true, then the labels automatically get set based on the number of ticks and axis max and min values. If,

different labels like non-numeric labels are desired, then this should be false, and the labels set manually.

- Axis Label Size / color / font style / font

Customize the visual aspects of axis labels.

- Num Decimals Axis labels

This controls the number of decimals displayed in the axis labels.

-Hide Labels

This determines whether x/y axis labels appear.

- Axis Label Space Offset

These control the distance the labels are offset from the axes. For example, for y-axis labels this is the amount of

space in the x direction the labels are offset from the y-axis.

Page 17 of 53

Manual Axes Type Parameters

- Axis Non Tick Percentage

This is the location of the axes relative to the other axis based on a percentage. This is only used if the "Use Non

Tick Percent" is enabled. This is automatically calculated for the auto origin axes type options.

- Axis Arrows

These control which, if any arrows display on the axes.

-Axis ticks right above

These control where the axes ticks appear in relation to the axes themselves. These are always automatically set

if an axes type other than "Manual" is specified. For example, an axes type of quadrant 1, the x-axis ticks will be

below the x-axis, but for axes type of quadrant 3, the x-axis is at the top edge of the graph, and the x-axis labels

should be above instead of below the x-axis.

- Axis Tick

These control where the axes are actually placed. By default they are set to 0, meaning the axes will be placed at

tick 0, which is the bottom left. If these are set to be the middle tick such as 2 if the max tick is 5, then the axes

will be in the center, corresponding to a 4 quadrant graph.

- Hide Tick

This will hide the tick label corresponding to the above parameter. Generally you will not need to hide the labels

if the axes are at the edge, but when they are in the middle, the axis labels may overlap the actual axis if this is

not set to true.

Manual Label Type Parameters

- Axis Label Spacing

These control the distances labels are offset from the axes lines along the same direction as the axis. This is

generally set automatically based on the X/Y label type, but could be set manually for the manual axis label type.

- Axis Label Dist Between

This is the distance between each label. This is generally set automatically based on the Label type, but could be

set manually for the manual axis label type.

3.4 Axis Graph Tooltip Parameters

- Tooltip Enabled

This will show a tooltip based on where your mouse hovers for points, bars, and legends. The tooltip will display

a single x or y value depending on the graph orientation, and line graphs will display (x,y). Legends will display

the series name.

- Tooltip Offset

This is the number of pixels to offset the tooltip from the mouse.

Page 18 of 53

- Tooltip Number Decimals

This is the number of decimals to display in the tooltip's x and y data.

- Tooltip Display Series Name

Determines whether or not the series name displays inside the tooltip. Useful if you have many series, otherwise

recommend disabling.

3.5 Axis Graph Animation Parameters

- Tooltip Animations Enabled

Determines whether or not the gameobject underneath the mouse for the tooltip plays an animation.

- Tooltip Animations Easetype

The easetype for the tooltip animations.

- Tooltip Animations Duration

The duration for the tooltip animations.

- Auto Animations Enabled

Determines whether automatic animations play. Automatic animations will happen for orientation change, and

for data changes such that data points are not added or deleted.

- Auto Animations Easetype

The easetype for auto animations.

- Auto Animations Duration

The duration for auto animations.

3.6 Axis Graph Misc Parameters

-Axis Width

This determines the width of both the x and y axes.

- Auto shrink at percent

Only used when Min / Max Auto Shrink on an axis is enabled. This is the threshold at which an auto shrink

occurs. It is a percentage of the total axis length. For example, if the y axis min is 0 and max is 100, and this

parameter is 60%, then a shrink will occur when the series data has a data point below 60.

- Auto grow and shrink by percent

Only used when Min / Max Auto Shrink or Grow on an axis is enabled. This is the amount by which a grow /

shrink increases / decreases an axis max / min value based on the total axis length. For example, if the y axis min

is 0 and max is 100, and the series data has a data point exceeding 100, and this parameter is 20%, then the new

max to be 120.

- Point prefabs

Page 19 of 53

This is the list of point prefabs with which the series' point prefab index corresponds. A series with a point

prefab of 0 means use element 0 in this list.

- Link prefabs

This is the list of link prefabs with which the series' link prefab index corresponds. A series with a link prefab of 0

means use element 0 in this list.

- Bar Prefab

For bar graphs, this is the prefab used in drawing the bars for all series.

- Series Prefab

Dynamically adding series with the addSeries() function will use this prefab to create the new series.

- Tick size

The width and height of the axis ticks.

- Graph title string / offset

The string displayed for the graph title. The offsets control the position in relation to the top of the graph.

- Y / X Axis

A reference to the Axes. Refer to the Axis Parameters section for info about customizing the axes.

- Legend

A reference to the legend. Refer to the legend section for info about customizing the legend.

3.7 Series Parameters

Graphs can be customized for each series based on the series parameters.

Note that each series exists under the series parent under the graph parent:

Core Parameters

- Point Values

This is the list of Vector2 float data used for this series. This data controls how the points are positioned. In

certain cases the x-value of this data is completely ignored.

- Combo Type

Applies when the graph's Graph Type is set to Combo. Determines whether the series displays as a line or as a

set of bars.

Page 20 of 53

- Series Name

This is the name of the series. This can appear in a graph legend.

- Point Width Height

For line graphs, this is the width and height of each point sprite.

- Line Scale

For line graphs, this is the thickness of the lines as defined by the object's transform local scale.

- Point Color

This is the colors of all the points / bars, unless use point colors is enabled and point colors are specified.

- Use Point Colors / Point Colors

This can be enabled and individual colors can be specified to colorize individual points / bars.

- Line Color

 The color of the lines for line graphs.

- Use X Dist Between to Space / Auto Update X Dist Between / X Dist Between Points

These parameters can be used to automatically space data for the x-axis (or y-axis depending on the graph

orientation). If Use X Dist Between To Space is enabled, it is not necessary to set series' x data to be anything

meaningful.

X Dist Between Points controls the spacing between points / bars. If "auto update x Dist Between" is true, then

"X Dist Between Points" auto updates based on the number of points that exist in the series and the length of

the axis.

- Extra X Space

This adds space between the series and the axis (or shifts the entire series by this amount). This can be used to

add extra space between the series and the axis. It can also be useful to add more spacing between bars for

side-by-side bar charts. Note that this is set automatically if the "Auto Update Series Axis Spacing" is enabled on

the graph.

- Hide points / lines

These can be used if you want your line graph to only have points or only have lines for example.

- Connect first to last

If true, this will create a line between the first and last points. This can be used to create a circle or other shapes.

- Line Padding

This is the amount of space between a line ending and the middle of a point. This can be used for a different

look for line graphs.

Label Parameters

Refer to the separate section about data labels.

Page 21 of 53

Shading Parameters

Refer to the separate section about area shading.

Misc Parameters

- The Graph

This is a reference to the object that has the WMG_Axis_Graph script. An axis graph script is required to render

a series.

- Real-Time / Point Values Data Source

These reference a WMG_Data_Source script. This script can pull data dynamically via reflection to populate data

used in the graph.

- Point Prefab

For line graphs, this is the index of the prefab used in drawing the points. The list of possible point prefabs is on

the graph script.

- Link prefab

For line graphs, this is the index of the prefab used in drawing the lines. The list of possible link prefabs is on the

graph script.

- Legend Entry Prefab

The prefab used to create the legend entry for this series.

Page 22 of 53

3.8 Other Notes

Note that the grid lines, axis ticks, and axis labels are all implementations of WMG_Grid. Grid parameters are

explained in a later section.

Horizontal grid is GridLinesX.

Vertical grid is GridLinesY.

The x-axis and y-axis each are just three sprites, one for the line and two for the arrows.

3.9 Animations

The graph script contains functions that can be used in your own code to do animations. There are currently

three main functions:

- animScaleAllAtOnce

This animates everything at once.

- animScaleBySeries

This animates each series consecutively, one after the other.

- animScaleOneByOne

This animates points or lines based on their position in the List<Vector2> , and attempts to animate across

multiple series at the same time. If each series has the same number of points, then each point should animate

at the same time across all the series. If there are 50 points in one series and 10 points in another series, then 5

points will animate from the 50 point series in the same time it takes to animate 1 point from the 10 point

series.

Another useful function to get different looking animations involves changing the pivots of lines:

- changeAllLinePivots

Page 23 of 53

3.10 Events

The graph script contains events that can be used in combination with your custom code to add interactivity to

your graphs. These are currently 12 available events (note that "Leg" refers to legend):

Note that for NGUI, there are no "MouseLeave" events because for NGUI, there is only an OnHover() event, but

for Daikon, there is both MouseEnter and MouseLeave events. Instead, the OnHover() event passes a boolean to

represent whether it was an enter or leave.

3.11 Dynamically Add / Delete Series

The graph script contains functions to add and delete series:

public WMG_Series addSeries()

public void deleteSeries()

Simple call these functions and a series is added onto the end or deleted from the end.

There are also functions to add / delete a series at a specified indexed position.

Page 24 of 53

3.12 Area Shading

There are several parameters on WMG_Series that allow the ability to add area shading for the series.

The area shading type can be changed from None (default) to either solid or gradient:

Area Shading Uses Compute Shader - Determines whether or not the area shading uses a compute shader in

order to render. If enabled, then only a single rectangle is created and the shading is drawn in one pass via a

compute shader, otherwise there is a rectangle created between each 2 points in the series and each rectangle

takes an additional draw call due to the use of custom shaders / instanced materials. It is much better for

performance to use a compute shader, however it will only work for certain platforms. Refer to the Unity docs

for more info - https://docs.unity3d.com/Manual/ComputeShaders.html

Area Shading Mat Solid / Gradient (only used when compute shader is not enabled) - These are the materials

used on the area shading rectangles.

Area Shading Parent - The empty gameobject parent for the object(s) created for area shading.

Area Shading Prefab - Instantiated for each area shading rectangle when not using compute shader.

Area Shading CS Prefab - Instantiated as a single rectangle when using compute shader.

The Area Shading Color changes the color for all area shading rectangles for the series.

The Area Shading Axis Value controls the minimum y-value (or x-value for horizontal orientation graphs), that is

used for each area shading rectangle.

https://docs.unity3d.com/Manual/ComputeShaders.html

Page 25 of 53

3.13 Real-Time Updating

Setting up real-time updating from an arbitrary variable is pretty easy. Simply drag and drop a

WMG_Data_Source script to any object in the scene. Drag and drop this component to the Real Time Data

Source on the WMG_Series component.

Refer to the Populating Data Dynamically via Reflection section for info on how to setup the WMG_Data_Source

component.

Then use the following function on the WMG_Series to start and stop plotting data.

- public void StartRealTimeUpdate()

- public void StopRealTimeUpdate()

3.14 Data Labels

There are several parameters on WMG_Series that allow the ability to add data labels for the series.

- Data Labels Enabled

This determines whether or not data labels are created.

- Data Label Prefab

This is the prefab used to create each data label. This could be changed if there is a need to for example change

the font color or change the font.

- Data Labels Num Decimals

If the data has decimals, then this determines how many decimals will display in the data labels.

- Data Labels Font Size / color / font style / font

Customize the visual aspects of the data labels.

- Data Labels Offset

This can be used to further control the positioning of the data labels.

Page 26 of 53

- Data Labels Parent

This is just a reference to the gameobject that is the parent for all data labels created.

3.15 Dynamically Resizing

There are several options on WMG_Axis_Graph that allow the ability to dynamically resize content in a graph

based on the container dimensions of the graph. This means that when this functionality is enabled, changing

the width or height of a RectTransform (UGUI), UIWidget (NGUI), or dfControl (DFGUI) will automatically resize

the graph as well as its content.

Resize Properties

The resize properties control what resizes when a graph's width / height changes.

Page 27 of 53

3.16 Dual-Y Axis

To make charts use two different y-axes, set the graph's "Axes Type" to "DUAL_Y". Note that this does not work

for charts of horizontal orientation. After setting this, a new "Yaxis2" tab will appear in the inspector, making it

possible to configure the secondary y-axis.

All the settings on the secondary y-axis work the same way as the primary y-axis. The only exception being that

the horizontal grid lines are based on the number of ticks of the primary y-axis, and not the secondary y-axis.

Now to have different series use the secondary y-axis instead of the primary y-axis, set "Use Second Yaxis" to

true.

That's pretty much all there is to it. Lastly note that the secondary y-axis title is rotated 180 degrees and

anchored on the right side

Page 28 of 53

IV. Bar Graphs

4.1 Getting Started
Drag and drop the BarGraph prefab from the Prefabs/Graphs folder into your scene:

The graph will appear when you play the scene:

4.2 Axis / Series Graph Parameters

Bar graphs can be customized based on the axis graph parameters and the parameters associated with each

series assigned to the graph. Parameters for the axis graph are the same for both line and bar graphs. There are

only a couple parameters that are specific to bar / line. Simply use the graph type parameter to change between

line and bar graphs.

Page 29 of 53

V. Functions & Misc Info

5.1 Axis Graph Functions

- public WMG_Series addSeries()

Use this function to create a new series on the graph. This will append it to the end of the list of series.

- public void deleteSeries()

Use this function to delete the last series on the graph.

- public List<WMG_Node> getYAxisLabels()

- public List<WMG_Node> getXAxisLabels()

These return the list of nodes which are the x/y-axis labels.

- public List<GameObject> getXAxisTicks()

- public List<GameObject> getYAxisTicks()

These return the list of gameobjects which are the x/y-axis ticks.

5.2 Series Functions

- public List<GameObject> getPoints()

Returns the list of gameobjects which represent the nodes of this series. Each gameobject will have WMG_Node

script. Works the same for line graphs / bar graphs.

- public List<GameObject> getLines()

Returns the list of gameobjects which represent the links of this series. Each gameobject will have WMG_Link

script. Works for line graphs.

- public Vector2 getNodeValue(WMG_Node aNode)

Returns the x and y data that corresponds with the given WMG_Node for this series.

- public GameObject getLegendParent()

Returns the gameobject that is the parent of the legend for this series.

- public void StartRealTimeUpdate()

If you have setup the graph to do real-time updating with the public variables related to real-time updating, then

this will begin plotting data in real-time.

- public void StopRealTimeUpdate()

This will stop real-time update data plotting.

Page 30 of 53

5.3 Graph Manager Functions

If you are interested in creating your own complex graphs, then you can use the graph manager as the basis for

your own custom graph. All graph maker graphs inherit from the graph manager (even pie graphs and grids). So

you can use this to create closed loop graphs, or any other more complex graphs.

- public GameObject CreateNode(Object prefabNode, GameObject parent)

This creates a node. The prefab just needs to have a WMG_Node script attached. If parent is NULL, then the

gameobject that has the graph manager script is used as the parent.

- public GameObject CreateLink(WMG_Node fromNode, GameObject toNode, Object prefabLink, GameObject

parent)

This creates a link between nodes. Note that both nodes need a WMG_Node script. The prefab link needs to

have a WMG_Link script attached. If parent is null then the to node's parent is used.

- public void DeleteNode(WMG_Node theNode)

This deletes the given node gameobject, as well as all links associated with this node.

- public void DeleteLink(WMG_Link theLink)

This deletes the given link gameobject.

- public List<GameObject> NodesParent

This is the list of all the gameobject nodes in the graph.

- public List<GameObject> LinksParent

This is the list of all the gameobject links in the graph.

- public GameObject ReplaceNodeWithNewPrefab(WMG_Node theNode, Object prefabNode)

You can use this to dynamically replace all nodes in a graph with a different prefab node.

- public List<Vector2> GenLinear(int numPoints, float minX, float maxX, float a, float b)

- public List<Vector2> GenQuadratic(int numPoints, float minX, float maxX, float a, float b, float c)

- public List<Vector2> GenExponential(int numPoints, float minX, float maxX, float a, float b, float c)

- public List<Vector2> GenLogarithmic(int numPoints, float minX, float maxX, float a, float b, float c)

- public List<Vector2> GenCircular(int numPoints, float a, float b, float c)

- public List<Vector2> GenRandomXY(int numPoints, float minX, float maxX, float minY, float maxY)

- public List<Vector2> GenRandomY(int numPoints, float minX, float maxX, float minY, float maxY)

These functions are mainly useful for generating data used in line or bar graphs, however they may be useful in

other graphs, so they are on the graph manager script.

- public List<WMG_Link> FindShortestPathBetweenNodes(WMG_Node fromNode, WMG_Node toNode)

Given two nodes return one or more shortest paths between the nodes based on the number of links. There can

be multiple shortest paths in closed loop graphs or grids.

Page 31 of 53

- public List<WMG_Link> FindShortestPathBetweenNodesWeighted(WMG_Node fromNode, WMG_Node

toNode, bool includeRadii)

Given two nodes return one or more shortest paths between the nodes based on the link weights, and also node

radii if include radii is true. Every WMG_Link has a weight variable which you can use to specify weights, and

every WMG_Node has a radius value, which can also be used in the calculation of shortest paths.

5.4 Node Functions

- public void Reposition (float x, float y)

Repositions the node to the newly specified local (NGUI) / relative (Daikon) position. This also repositions all

associated links.

- public void RepositionRelativeToNode (WMG_Node fromNode, bool fixAngle, int degreeStep, float lengthStep)

Repositions the node relative to another node based on the degree and length steps. Refer to the WMG_Editor

example scene in NGUI package / web-player demo posted on the first page of the Unity forum for an example

of this in use. Hold control and / or shift while creating a node from another node.

5.5 Populating Data Dynamically via Reflection

Use the WMG_Data_Source component to populate data dynamically via reflection

Any Graph Maker script that has a "Data Source" reference will automatically populate data based on the

referenced WMG_Data_Source component.

There are 3 types of data sources:

There are also public functions that set data provider

public void setDataProviders<T> (List<T> dataProviderList)

public void setDataProvider<T> (T dataProvider)

public void addDataProviderToList<T> (T dataProvider)

public bool removeDataProviderFromList<T> (T dataProvider)

Let's say you want to populate the List<float> for a WMG_Pie_Graph using this component.

Page 32 of 53

For single object multiple variables, and single object single variable, you must set the data provider using

setDataProvider().

For multiple objects single variable, you must set the data providers using the setDataProviders / add / remove

data provider functions.

Lastly, specify the variable names that will be used from those objects either through the editor, or also via

script.

You can optionally set the variable type to improve performance. If no variable type is specified, the code will

search for a field, then a property, then a field of a property, and then a field of a field.

You can specify a field of a property, for example, you can specify a variable name of "localPosition.x"

Populating data via Play Maker variables

Note that playmaker doesn't allow calling a function with a generic (T) argument. To pull in data via Play Maker

variables, open the WMG_Data_Source script and uncomment the top portion of the script by deleting the 2

lines that say this:

/* // DELETE THIS LINE FOR USE WITH PLAYMAKER

Ensure that the data source type is "Multiple_Objects_Single_Variable". Set the variable name to "Value" (this is

the name of the variable where the data is stored for all PlayMaker FSM variables). Then call the following

functions on WMG_Data_Source in PlayMaker:

addPlaymakerVar(PlaymakerFSM, string)

removePlaymakerVar(PlaymakerFSM, string)

The first parameter is the PlaymakerFSM object, and the second parameter is the string name of the Playmaker

variable.

5.6 Legends

WMG_Pie_Graph and WMG_Axis_Graph reference a WMG_Legend. In order to customize the legend

appearance, first find the legend in the hierarchy:

Page 33 of 53

Core Parameters

- Hide Legend

Controls whether the legend is displayed.

- Legend Type

This controls where the legend is positioned (bottom or right), as well as the default arrangement of the legend

entries. Bottom arranges the elements horizontally, but vertically for right.

- Show Background

Controls whether the legend background is displayed.

- Opposite side legend

This positions the legend on the opposite side than normal / defined by the legend type. For example for a right

legend, the legend will be placed on the left side if this is enabled.

- Offset

Controls how far the legend is offset from the graph.

- Set Width From Labels

When enabled, the legend entry width is automatically set based on the font size and the largest amount of text

in the legend entries.

- Legend Entry Width / Height

The width / height of every legend entry.

- Num Rows or Columns

This controls how many rows will appear for horizontal legends, and how many columns will appear for vertical

legends. If the number of series does not divide evenly into the number of rows / columns, then the first row(s) /

column(s) will have the extras. For example, for a horizontal legend, if there are 10 series, and this is set to 4,

then the first 2 rows will have 3, and the second 2 rows will have 2.

- Legend Entry Link Spacing

This is the length of each of the lines appearing on the side of the node for the legend entry for line graphs.

- Legend Entry Spacing

This controls the spacing between the icon and the text for the legend entry of this series.

- Pie Swatch Size

The size of the swatches for pie graph legends

- Background Padding

The number of pixels of the border of the legend relative to the entries.

- Autofit Enabled

Changes the number of rows or columns to best fit the graph's width / height.

Page 34 of 53

Label Parameters

- Label Type

Controls how the labels appears for the legend entries.

- Num Decimals

The number of decimals for the legend text entries.

- Legend entry font size / color / font style / font

Customize the visual aspects of the legend entry text.

Misc Parameters

References to legend objects.

5.7 TextMesh Pro

You can use TextMesh Pro instead of UGUI for all text objects with these steps:

1. Import Graph_Maker/TMP/UGUItoTMP.unitypackage

2. Click menu option Assets/Graph Maker/UGUI -> TMP Prefabs

3. Change the code in WMG_GUI_Functions.cs to inherit from WMG_TMP_Text_Functions instead of

WMG_Text_Functions

5.8 Custom ToolTips and DataLabels

You can customize tooltips by creating your own custom function with the following signature:

string myCustomFunction (WMG_Series series, WMG_Node node) {}

Your function just needs to return the string that displays for a given node that is hovered over. To get the x and

y values corresponding to the node you can use series.getNodeValue(node)

To use your function just set the publicly exposed delegate like so (where graph is a WMG_Axis_Graph):

graph.theTooltip. tooltipLabeler = myCustomFunction;

Similarly for data labels (the labels that appear over individual bars or points if you have them enabled can also

be customized). To set the delegate for this, you need a reference to the series (it is series specific) like so:

series. seriesDataLabeler = myCustomFunction;

where myCustomFunction has the signature:

string myCustomFunction(WMG_Series series, float val);

Note that the default function that graph maker uses for labeling is set in the WMG_Axis_Graph.Init() which is

called automatically in Start(). But, if you instantiate a graph and set your function in your own custom script in

Page 35 of 53

Start() then it will not get set because the Start() function does not happen immediately. To workaround this,

just called graph.Init() after instantiating the graph and before assigning the delegate.

Page 36 of 53

VI. Square / Rect / Hex Grids

6.1 Getting Started
Drag and drop the SquareGrid / HexGrid prefab from the Prefabs/Graphs folder into your scene:

The grids will appear when you play the scene:

Page 37 of 53

6.2 Parameters

Grids can be customized based on following parameters:

- Auto Refresh

Automatically refreshes the grid based on changes to grid parameters.

- Grid Type

This determines whether the grid will be a square / rectangular grid vs. a hexagonal grid

- Node Prefab

This is the prefab used for the nodes.

- Link Prefab

This is the prefab used for the links. For quadrilateral grids, each node has 4 links. For hexagonal grids, each

node has 6 links.

- Grid num nodes x / y

This determines how many nodes are in the x and y directions.

- Grid Link Length x / y

This determines the length of the links in the x and y directions.

- Create Links

This determines whether links are created.

- No vertical / horizontal links

This determines whether links are created in certain directions. This is primarily used for the grid

implementations in the line graph. The horizontal grid lines have no vertical links checked, and the vertical grid

lines have not horizontal links checked.

Page 38 of 53

VII. Random Graphs

7.1 Getting Started
Drag and drop the RandomGraph prefab from the Prefabs/Graphs folder into your scene:

The graph will appear when you play the scene:

7.2 Parameters

Random Graphs can be customized based on following parameters:

Page 39 of 53

- Graph Manager

This is a reference to the game object with the graph manager script required for all graphs.

- Node / link prefabs

The prefabs used for each node and link

- Num Nodes

This is the total number of nodes that will appear in the resulting graph

- Min Angle

This is the minimum possible angle between neighbor nodes. So if this is 15, then there should not exist any 2

neighbors that are less than 15 degrees apart from one another.

- Min / Max Angle Range

By default the range is 0 - 360, meaning that any randomly generated node can appear at any angle around a

given node. This can be used to control the direction in which the graph propagates. For example, to create

procedural lightning looking graphs you would want to set this to a narrow range like 0 - 45.

- Min / Max random number neighbors

This controls how many neighbors there are for each node. For example, if every node should have 3 neighbors,

then set the min and max to 3.

- Min / Max random link length

This determines the distance between nodes. Setting a high range will create more sporadic looking graphs,

while setting the values equal will generate grid like graphs.

Page 40 of 53

- Center propagate

This determines how the propagation proceeds. If it is unchecked, then a node is randomly picked from the set

of unprocessed nodes to process. Processing a node randomly generates neighbors for that node, marks the

node processed, and moves on to another node process. If this is set to true, then the next node processed will

be the oldest one that was created.

- No link intersection

This ensures that a randomly generated link does not intersect with any existing links. This should generally

always be set to true unless you want to create some strange overlapping graph.

- No node intersection

This ensures that a randomly generated node will not intersect with any existing nodes. Circle intersection

checks are done using the radii of the nodes. This should generally always be set to true unless you want nodes

to possibly overlap.

- No node intersection radius padding

This adds onto the radii used in the circle intersection checks used for the node intersection checks. Increasing

this value will ensure that nodes are more spaced apart from one another.

- Max neighbor attempts

Sometimes highly depending on the parameters used, the graph will fail to produce any results, or fail to

produce all the nodes specified. If this happens a warning is logged to the console saying how many nodes were

produced which was less than the number of nodes you specified. This generally means your parameters were

too specific. If you still feel your parameters are accurate, you can increase this number to try and fully complete

the graph. The default is 100, meaning while processing a neighbor, up to 100 random angles and link lengths

are generated. Failing any of the checks such as the min neighbor angle or intersection checks will increase the

attempt number and generate a new possibility.

- No link node intersection

This ensures that creating a new node does not intersect an existing link, or that creating a new link does not

intersect an existing node. This performs circle-line intersection checks with the creating link / node with all

existing nodes / links.

- No links node intersection radius padding

This increases the radius of the node used in the circle-line intersection checks. A higher value will ensure a

graph that has links and nodes that are more spaced apart from each other.

- Create on start

If this is true, then the GenerateGraph() function is called in the OnStart() function. If you want to change

parameters at run-time and then generate the graph yourself then you would set this to false, get a reference to

the script and call the public function GenerateGraph().

- Debug Random Graph

This can be useful to troubleshoot exactly what is happening during the random graph generation process. I

resolved many bugs, and added new functionality using this parameter.

Page 41 of 53

VIII. Hierarchical Skill Trees

8.1 Getting Started
Drag and drop the HierarchicalTree prefab into your scene:

The example tree will then appear when you play the scene:

Page 42 of 53

8.2 Summary

Overall, the tree is a collection of nodes, "invisible nodes", and links. The "invisible nodes" are necessary to

create links that do not appear to start from an actual node.

Node positions are defined by a column and a row position. Row height and column width are entirely

configurable, so the columns and rows could be represented as a number of pixels.

The width / height, and radius of all nodes can also be set at the tree level. In this example the radius is set to a

be a little more than half the width / height of the nodes so that the links appear to have a little bit of space

instead of directly touching the node. You could also just set a radius of 0, to have the links go behind the nodes.

You can also set whether all the nodes represent circles or squares. Square is the default, and the effect is that

the link end and start position will be based on a square edge instead of a circle edge. The radius for a square

means half the width / height of a square, and for a circle, well it means the radius :)

Lastly, to replace the default white squares there is a prefab list. Each position in the prefab list corresponds to

the node in the lists that define the node's position. You can also replace the default white square with your

own custom default prefab by changing the default node prefab parameter.

8.3 Parameters

Core Parameters

- Num Nodes

This is the number of nodes that will be in the tree (excluding invisible nodes).

- Num Links

This is the number of links that will be in the tree.

- Node Prefabs

These prefabs override the default node prefab. Each element in the list corresponds to the nodes in the column

and row position lists.

- Node Columns

This is each node's column position.

- Node Rows

This is each node's row position.

- Link Node From IDs

This is the list of links and each link's from node. The ID here corresponds to the element in the list for the node

columns / rows. For example node column / row element 0 is node ID 1. This list also applies for invisible nodes,

however the node IDs will be denoted by a negative number (explained more in the invisible nodes section).

Page 43 of 53

- Link Node To IDs

Same as above, except this is the end point for the link instead of the start point for the link.

- Num Invisible Nodes

This is the number of invisible nodes that will be in the tree. Invisible nodes are used to create links that do not

necessarily have to start or end from an actual node. In the link To / From IDs list, invisible nodes are

represented by negative numbers. For example -1 means the invisible node at element 0 for the invisible node

columns / rows lists.

- Invisible Node Columns

This is each invisible node's column position.

- Invisible Node Rows

This is each invisible node's row position.

- Node Width Height

This is the height and width of every node's sprite.

- Node Radius

This is the radius of all circle nodes or half the width / height of all square nodes. This determine the starting and

ending points for the links.

- Square Nodes

This sets a boolean on all nodes to tell whether or not the node is represented as a square instead of a circle.

Square nodes will have the effect of making the link start and end points be based on the square's edge.

Misc Parameters

- Node Parent

This is the parent game object for all the nodes.

- Link Parent

This is the parent game object for all the links.

- Default Node Prefab

The default node prefab is a white square, which can be overridden by the node prefab list.

- Link Prefab

This is the prefab for all the links.

- Invisible Node Prefab

This is just the prefab for the invisible nodes, and you will probably never need to change this.

Page 44 of 53

IX. Radar Graphs

9.1 Getting Started
Drag and drop the RadarGraph prefab into your scene:

The example radar graph will then appear when you play the scene:

9.2 Summary

Overall, the radar graph is a collection of series from a normal Axis graph.

Each series has the "Connect First to Last" set to True, which is what allows creating a closed loop line graph.

The points are also all disabled, though they could be enabled if you want points to appear.

The text labels are also created from a series. The lines are disabled and the points are created from a text node

prefab which is a text label with the WMG_Node script.

Page 45 of 53

9.3 Parameters

- Random Data

This generates random data for the data series of the radar graph, and should typically only be used for

demonstration purposes. To use your own data you would disabled this and use your own List<float>.

- Num Points

This control how many points or edges there are for the radar graph. So setting 5 here will set all the grids to be

pentagons.

- Offset

This can be used for moving around the radar graph without moving the graph as a whole (e.g. without moving

the background sprite).

- Degree offset

This allows rotating the content of the radar graph such as the grids.

- Radar min / max value

This controls the radius of the radar graph.

- Num Grids

This is the number of grids that appear. Each grid is evenly spaced.

- Grid line width / color

Controls visual aspects of the grids.

Page 46 of 53

- Num data series

This controls how many data series there are. Typically 1 or maybe 2 can be used. Anything more and the graph

will be difficult to read.

- Data series line width / colors

Controls visual aspects of the data series.

- Labels color / offset / font size

Controls visual aspects of the labels.

- Label strings

The text values of the labels.

- Hide Labels

Whether to hide the labels.

Page 47 of 53

X. Ring Graphs

10.1 Getting Started
Drag and drop the RingGraph prefab into your scene:

The example ring graph will appear when you play the scene:

Page 48 of 53

10.2 Summary

Overall, the ring graph is a collection of rings and optionally bands. Each ring and band is a radial sprite, that has

an alpha cutout which happens via manipulation of the texture in memory.

The ring graph can also have an arbitrary number of degrees specified, which controls how many degrees are

cutout from the circle. For example at 180, a half-circle appears for all the rings and bands.

10.3 Parameters

Core Parameters

- Values

This determines where the bands / labels appear. For example, if the min were 100, and the max 200, and a

value of 150 were specified, then the band / label will appear in the center of the graph.

- Labels

This determines the text displayed in the label for each ring.

- Band Mode

When band mode is enabled, each ring has a corresponding band, except for the outer most ring. When

disabled, only rings will appear.

Page 49 of 53

- Inner Radius Percentage

This is the radius of the innermost ring relative to the outermost ring. The radius of the outermost ring is

determined by the width / height of the graph rect transform.

- Degrees

This is the number of degrees cut out from all the rings and bands. For example if 90 is specified, then 3/4 of a

circle will appear for all rings and bands.

- Min Value

This is the value that represents the minimum of the ring graph (the left-most side).

- Max Value

This is the value that represents the maximum of the ring graph (the right-most side).

- Band Color

This is the base color given to all bands.

- Band Colors

This can be used to override colors of individual bands if it is needed that the color be different than the base

band color.

- Auto Update Band Alpha

This automatically adjusts the alpha of the band colors, such that the bands gradually fade out, the closer the

band is to the center of the graph.

- Ring Color

This is the color given to all the rings.

- Ring Width

This is the width of all of the rings.

- Ring Point Width Factor

Determines the size of the points as a factor of the ring width.

- Band Padding

This is the padding between a ring and a band.

- Label line padding

The number of pixels the label lines and the zero line of the graph extend beyond the outer most ring.

- Left / Right / Top / Bot Padding

The number of pixels of padding for the background sprite in relation to the outer most ring sprite.

Page 50 of 53

- Anti Aliasing / Strength

Because the rings and bands are constructed dynamically via texture manipulation, we can have higher control

over the anti-aliasing strength applied to the ring / band sprites. The strength represents a number of pixels to

which alpha fading is applied in order to simulate a perfect circle.

Misc Parameters

- Animate Data / Anim Duration / Anim Ease Type

When enabled, any updates to the data will animate the band and label line towards the newly specified value

over the specified animation duration using the specified ease type.

-Ring IDs

This associates an ID to each ring, so that an API to query individual rings can be used. Also note that an example

API function exists to highlight a particular ring using the ring ID.

Page 51 of 53

XI. Bezier Band Graphs

11.1 Getting Started
Drag and drop the BezierBandGraph prefab into your scene:

The example will appear when you play the scene:

Page 52 of 53

11.2 Summary

Overall, the bezier band graph is just a fancy pie chart / way of visualizing percentages. It is a collection of bands

defined by bezier curves. Each band and its borders are white textures whose colors were manipulated using the

SetPixels() function.

Note that setting pixels of textures is a slow operation and thus updating this graph in real-time is not really

possible. A lower resolution texture on the band prefab (default 2k x 2k), will greatly increase the speed, but not

look so good.

11.3 Parameters

Core Parameters

- Values

This is the List<float> values used to determine how many, where, and how wide each of the bands are.

- Labels

This determines the text displayed in the label for each band.

- Fill Colors

The colors used for each of the bands.

- Band Line Color

Each band is bordered by 2 lines, this is the color of all of the border lines.

- Start Height Percent

This is the height in terms of a percentage of the rect transform height that the collection of bands starts at.

- Band Spacing

The number of pixels between each band.

Page 53 of 53

- Band Line Width

The number of pixels in each band line border.

Cubic Bezier P1 / P2

- Controls the overall shape of the graph. Play around with these for a different look. Refer to wiki on cubic

bezier formula for more information for what these really control.

Num Decimals

- The number of decimals used in the labels.

Font Size

- The font size of the labels.

