/****************************************************************************** * Spine Runtimes License Agreement * Last updated July 28, 2023. Replaces all prior versions. * * Copyright (c) 2013-2023, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software or * otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE * SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ using System; namespace Spine { using Physics = Skeleton.Physics; /// /// /// Stores the current pose for a transform constraint. A transform constraint adjusts the world transform of the constrained /// bones to match that of the target bone. /// /// See Transform constraints in the Spine User Guide. /// public class TransformConstraint : IUpdatable { internal readonly TransformConstraintData data; internal readonly ExposedList bones; internal Bone target; internal float mixRotate, mixX, mixY, mixScaleX, mixScaleY, mixShearY; internal bool active; public TransformConstraint (TransformConstraintData data, Skeleton skeleton) { if (data == null) throw new ArgumentNullException("data", "data cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null."); this.data = data; bones = new ExposedList(); foreach (BoneData boneData in data.bones) bones.Add(skeleton.bones.Items[boneData.index]); target = skeleton.bones.Items[data.target.index]; mixRotate = data.mixRotate; mixX = data.mixX; mixY = data.mixY; mixScaleX = data.mixScaleX; mixScaleY = data.mixScaleY; mixShearY = data.mixShearY; } /// Copy constructor. public TransformConstraint (TransformConstraint constraint, Skeleton skeleton) : this(constraint.data, skeleton) { mixRotate = constraint.mixRotate; mixX = constraint.mixX; mixY = constraint.mixY; mixScaleX = constraint.mixScaleX; mixScaleY = constraint.mixScaleY; mixShearY = constraint.mixShearY; } public void SetToSetupPose () { TransformConstraintData data = this.data; mixRotate = data.mixRotate; mixX = data.mixX; mixY = data.mixY; mixScaleX = data.mixScaleX; mixScaleY = data.mixScaleY; mixShearY = data.mixShearY; } public void Update (Physics physics) { if (mixRotate == 0 && mixX == 0 && mixY == 0 && mixScaleX == 0 && mixScaleY == 0 && mixShearY == 0) return; if (data.local) { if (data.relative) ApplyRelativeLocal(); else ApplyAbsoluteLocal(); } else { if (data.relative) ApplyRelativeWorld(); else ApplyAbsoluteWorld(); } } void ApplyAbsoluteWorld () { float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY; bool translate = mixX != 0 || mixY != 0; Bone target = this.target; float ta = target.a, tb = target.b, tc = target.c, td = target.d; float degRadReflect = ta * td - tb * tc > 0 ? MathUtils.DegRad : -MathUtils.DegRad; float offsetRotation = data.offsetRotation * degRadReflect, offsetShearY = data.offsetShearY * degRadReflect; Bone[] bones = this.bones.Items; for (int i = 0, n = this.bones.Count; i < n; i++) { Bone bone = bones[i]; if (mixRotate != 0) { float a = bone.a, b = bone.b, c = bone.c, d = bone.d; float r = MathUtils.Atan2(tc, ta) - MathUtils.Atan2(c, a) + offsetRotation; if (r > MathUtils.PI) r -= MathUtils.PI2; else if (r < -MathUtils.PI) // r += MathUtils.PI2; r *= mixRotate; float cos = MathUtils.Cos(r), sin = MathUtils.Sin(r); bone.a = cos * a - sin * c; bone.b = cos * b - sin * d; bone.c = sin * a + cos * c; bone.d = sin * b + cos * d; } if (translate) { float tx, ty; //Vector2 temp = this.temp; target.LocalToWorld(data.offsetX, data.offsetY, out tx, out ty); //target.localToWorld(temp.set(data.offsetX, data.offsetY)); bone.worldX += (tx - bone.worldX) * mixX; bone.worldY += (ty - bone.worldY) * mixY; } if (mixScaleX != 0) { float s = (float)Math.Sqrt(bone.a * bone.a + bone.c * bone.c); if (s != 0) s = (s + ((float)Math.Sqrt(ta * ta + tc * tc) - s + data.offsetScaleX) * mixScaleX) / s; bone.a *= s; bone.c *= s; } if (mixScaleY != 0) { float s = (float)Math.Sqrt(bone.b * bone.b + bone.d * bone.d); if (s != 0) s = (s + ((float)Math.Sqrt(tb * tb + td * td) - s + data.offsetScaleY) * mixScaleY) / s; bone.b *= s; bone.d *= s; } if (mixShearY > 0) { float b = bone.b, d = bone.d; float by = MathUtils.Atan2(d, b); float r = MathUtils.Atan2(td, tb) - MathUtils.Atan2(tc, ta) - (by - MathUtils.Atan2(bone.c, bone.a)); if (r > MathUtils.PI) r -= MathUtils.PI2; else if (r < -MathUtils.PI) // r += MathUtils.PI2; r = by + (r + offsetShearY) * mixShearY; float s = (float)Math.Sqrt(b * b + d * d); bone.b = MathUtils.Cos(r) * s; bone.d = MathUtils.Sin(r) * s; } bone.UpdateAppliedTransform(); } } void ApplyRelativeWorld () { float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY; bool translate = mixX != 0 || mixY != 0; Bone target = this.target; float ta = target.a, tb = target.b, tc = target.c, td = target.d; float degRadReflect = ta * td - tb * tc > 0 ? MathUtils.DegRad : -MathUtils.DegRad; float offsetRotation = data.offsetRotation * degRadReflect, offsetShearY = data.offsetShearY * degRadReflect; Bone[] bones = this.bones.Items; for (int i = 0, n = this.bones.Count; i < n; i++) { Bone bone = bones[i]; if (mixRotate != 0) { float a = bone.a, b = bone.b, c = bone.c, d = bone.d; float r = MathUtils.Atan2(tc, ta) + offsetRotation; if (r > MathUtils.PI) r -= MathUtils.PI2; else if (r < -MathUtils.PI) // r += MathUtils.PI2; r *= mixRotate; float cos = MathUtils.Cos(r), sin = MathUtils.Sin(r); bone.a = cos * a - sin * c; bone.b = cos * b - sin * d; bone.c = sin * a + cos * c; bone.d = sin * b + cos * d; } if (translate) { float tx, ty; //Vector2 temp = this.temp; target.LocalToWorld(data.offsetX, data.offsetY, out tx, out ty); //target.localToWorld(temp.set(data.offsetX, data.offsetY)); bone.worldX += tx * mixX; bone.worldY += ty * mixY; } if (mixScaleX != 0) { float s = ((float)Math.Sqrt(ta * ta + tc * tc) - 1 + data.offsetScaleX) * mixScaleX + 1; bone.a *= s; bone.c *= s; } if (mixScaleY != 0) { float s = ((float)Math.Sqrt(tb * tb + td * td) - 1 + data.offsetScaleY) * mixScaleY + 1; bone.b *= s; bone.d *= s; } if (mixShearY > 0) { float r = MathUtils.Atan2(td, tb) - MathUtils.Atan2(tc, ta); if (r > MathUtils.PI) r -= MathUtils.PI2; else if (r < -MathUtils.PI) // r += MathUtils.PI2; float b = bone.b, d = bone.d; r = MathUtils.Atan2(d, b) + (r - MathUtils.PI / 2 + offsetShearY) * mixShearY; float s = (float)Math.Sqrt(b * b + d * d); bone.b = MathUtils.Cos(r) * s; bone.d = MathUtils.Sin(r) * s; } bone.UpdateAppliedTransform(); } } void ApplyAbsoluteLocal () { float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY; Bone target = this.target; Bone[] bones = this.bones.Items; for (int i = 0, n = this.bones.Count; i < n; i++) { Bone bone = bones[i]; float rotation = bone.arotation; if (mixRotate != 0) rotation += (target.arotation - rotation + data.offsetRotation) * mixRotate; float x = bone.ax, y = bone.ay; x += (target.ax - x + data.offsetX) * mixX; y += (target.ay - y + data.offsetY) * mixY; float scaleX = bone.ascaleX, scaleY = bone.ascaleY; if (mixScaleX != 0 && scaleX != 0) scaleX = (scaleX + (target.ascaleX - scaleX + data.offsetScaleX) * mixScaleX) / scaleX; if (mixScaleY != 0 && scaleY != 0) scaleY = (scaleY + (target.ascaleY - scaleY + data.offsetScaleY) * mixScaleY) / scaleY; float shearY = bone.ashearY; if (mixShearY != 0) shearY += (target.ashearY - shearY + data.offsetShearY) * mixShearY; bone.UpdateWorldTransform(x, y, rotation, scaleX, scaleY, bone.ashearX, shearY); } } void ApplyRelativeLocal () { float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY; Bone target = this.target; Bone[] bones = this.bones.Items; for (int i = 0, n = this.bones.Count; i < n; i++) { Bone bone = bones[i]; float rotation = bone.arotation + (target.arotation + data.offsetRotation) * mixRotate; float x = bone.ax + (target.ax + data.offsetX) * mixX; float y = bone.ay + (target.ay + data.offsetY) * mixY; float scaleX = bone.ascaleX * (((target.ascaleX - 1 + data.offsetScaleX) * mixScaleX) + 1); float scaleY = bone.ascaleY * (((target.ascaleY - 1 + data.offsetScaleY) * mixScaleY) + 1); float shearY = bone.ashearY + (target.ashearY + data.offsetShearY) * mixShearY; bone.UpdateWorldTransform(x, y, rotation, scaleX, scaleY, bone.ashearX, shearY); } } /// The bones that will be modified by this transform constraint. public ExposedList Bones { get { return bones; } } /// The target bone whose world transform will be copied to the constrained bones. public Bone Target { get { return target; } set { target = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained rotation. public float MixRotate { get { return mixRotate; } set { mixRotate = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained translation X. public float MixX { get { return mixX; } set { mixX = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained translation Y. public float MixY { get { return mixY; } set { mixY = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained scale X. public float MixScaleX { get { return mixScaleX; } set { mixScaleX = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained scale Y. public float MixScaleY { get { return mixScaleY; } set { mixScaleY = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained shear Y. public float MixShearY { get { return mixShearY; } set { mixShearY = value; } } public bool Active { get { return active; } } /// The transform constraint's setup pose data. public TransformConstraintData Data { get { return data; } } override public string ToString () { return data.name; } } }