_xiaofang/xiaofang/Assets/Obi/Resources/Compute/DistanceFieldShape.compute

212 lines
6.4 KiB
Plaintext
Raw Normal View History

2024-12-18 02:18:45 +08:00
#include "ColliderDefinitions.cginc"
#include "ContactHandling.cginc"
#include "Transform.cginc"
#include "Simplex.cginc"
#include "Bounds.cginc"
#include "SolverParameters.cginc"
#include "Optimization.cginc"
#pragma kernel GenerateContacts
struct DistanceFieldHeader
{
int firstNode;
int nodeCount;
};
struct DFNode
{
float4 distancesA;
float4 distancesB;
float4 center;
int firstChild;
// add 12 bytes of padding to ensure correct memory alignment:
int pad0;
int pad1;
int pad2;
float4 GetNormalizedPos(float4 position)
{
float4 corner = center - float4(center[3],center[3],center[3],center[3]);
return (position - corner) / (center[3] * 2);
}
float4 SampleWithGradient(float4 position)
{
float4 nPos = GetNormalizedPos(position);
// trilinear interpolation of distance:
float4 x = distancesA + (distancesB - distancesA) * nPos[0];
float2 y = x.xy + (x.zw - x.xy) * nPos[1];
float dist = y[0] + (y[1] - y[0]) * nPos[2];
// gradient estimation:
// x == 0
float2 a = distancesA.xy + (distancesA.zw - distancesA.xy) * nPos[1];
float x0 = a[0] + (a[1] - a[0]) * nPos[2];
// x == 1
a = distancesB.xy + (distancesB.zw - distancesB.xy) * nPos[1];
float x1 = a[0] + (a[1] - a[0]) * nPos[2];
// y == 0
float y0 = x[0] + (x[1] - x[0]) * nPos[2];
// y == 1
float y1 = x[2] + (x[3] - x[2]) * nPos[2];
return float4(x1 - x0, y1 - y0, y[1] - y[0], dist);
}
int GetOctant(float4 position)
{
int index = 0;
if (position[0] > center[0]) index |= 4;
if (position[1] > center[1]) index |= 2;
if (position[2] > center[2]) index |= 1;
return index;
}
};
StructuredBuffer<float4> positions;
StructuredBuffer<quaternion> orientations;
StructuredBuffer<float4> principalRadii;
StructuredBuffer<float4> velocities;
StructuredBuffer<int> simplices;
StructuredBuffer<transform> transforms;
StructuredBuffer<shape> shapes;
// distance field data:
StructuredBuffer<DistanceFieldHeader> distanceFieldHeaders;
StructuredBuffer<DFNode> dfNodes;
StructuredBuffer<uint2> contactPairs;
StructuredBuffer<int> contactOffsetsPerType;
RWStructuredBuffer<contact> contacts;
RWStructuredBuffer<uint> dispatchBuffer;
StructuredBuffer<transform> worldToSolver;
uint maxContacts;
float deltaTime;
struct DistanceField : IDistanceFunction
{
shape s;
transform colliderToSolver;
StructuredBuffer<DistanceFieldHeader> distanceFieldHeaders;
StructuredBuffer<DFNode> dfNodes;
float4 DFTraverse(float4 particlePosition,
in DistanceFieldHeader header)
{
int stack[12];
int stackTop = 0;
stack[stackTop++] = 0;
while (stackTop > 0)
{
// pop node index from the stack:
int nodeIndex = stack[--stackTop];
DFNode node = dfNodes[header.firstNode + nodeIndex];
// if the child node exists, recurse down the df octree:
if (node.firstChild >= 0)
stack[stackTop++] = node.firstChild + node.GetOctant(particlePosition);
else
return node.SampleWithGradient(particlePosition);
}
return FLOAT4_ZERO;
}
void Evaluate(in float4 pos, in float4 radii, in quaternion orientation, inout SurfacePoint projectedPoint)
{
float4 pnt = colliderToSolver.InverseTransformPoint(pos);
if (s.is2D())
pnt[2] = 0;
float4 sample = DFTraverse(pnt, distanceFieldHeaders[s.dataIndex]);
float4 normal = float4(normalize(sample.xyz), 0);
projectedPoint.pos = colliderToSolver.TransformPoint(pnt - normal * (sample[3] - s.contactOffset));
projectedPoint.normal = colliderToSolver.TransformDirection(normal);
projectedPoint.bary = float4(1,0,0,0);
}
};
[numthreads(128, 1, 1)]
void GenerateContacts (uint3 id : SV_DispatchThreadID)
{
uint i = id.x;
// entry #11 in the dispatch buffer is the amount of pairs for the first shape type.
if (i >= dispatchBuffer[11 + 4 * SDF_SHAPE]) return;
int firstPair = contactOffsetsPerType[SDF_SHAPE];
int simplexIndex = contactPairs[firstPair + i].x;
int colliderIndex = contactPairs[firstPair + i].y;
shape s = shapes[colliderIndex];
if (s.dataIndex < 0) return;
DistanceFieldHeader header = distanceFieldHeaders[s.dataIndex];
DistanceField dfShape;
dfShape.colliderToSolver = worldToSolver[0].Multiply(transforms[colliderIndex]);
dfShape.s = s;
dfShape.distanceFieldHeaders = distanceFieldHeaders;
dfShape.dfNodes = dfNodes;
int simplexSize;
int simplexStart = GetSimplexStartAndSize(simplexIndex, simplexSize);
float4 simplexBary = BarycenterForSimplexOfSize(simplexSize);
float4 simplexPoint;
SurfacePoint colliderPoint = Optimize(dfShape, positions, orientations, principalRadii,
simplices, simplexStart, simplexSize, simplexBary, simplexPoint, surfaceCollisionIterations, surfaceCollisionTolerance);
float4 velocity = FLOAT4_ZERO;
float simplexRadius = 0;
for (int j = 0; j < simplexSize; ++j)
{
int particleIndex = simplices[simplexStart + j];
simplexRadius += principalRadii[particleIndex].x * simplexBary[j];
velocity += velocities[particleIndex] * simplexBary[j];
}
/*float4 rbVelocity = float4.zero;
if (rigidbodyIndex >= 0)
rbVelocity = BurstMath.GetRigidbodyVelocityAtPoint(rigidbodyIndex, colliderPoint.point, rigidbodies, solverToWorld);*/
float dAB = dot(simplexPoint - colliderPoint.pos, colliderPoint.normal);
float vel = dot(velocity /*- rbVelocity*/, colliderPoint.normal);
//if (vel * deltaTime + dAB <= simplexRadius + s.contactOffset + collisionMargin)
{
uint count = contacts.IncrementCounter();
if (count < maxContacts)
{
contact c = (contact)0;
c.pointB = colliderPoint.pos;
c.normal = colliderPoint.normal * dfShape.s.isInverted();
c.pointA = simplexBary;
c.bodyA = simplexIndex;
c.bodyB = colliderIndex;
contacts[count] = c;
InterlockedMax(dispatchBuffer[0],(count + 1) / 128 + 1);
InterlockedMax(dispatchBuffer[3], count + 1);
}
}
}