#include "GridUtils.cginc" #include "CollisionMaterial.cginc" #include "ContactHandling.cginc" #include "ColliderDefinitions.cginc" #include "Rigidbody.cginc" #include "Bounds.cginc" #include "Simplex.cginc" #include "SolverParameters.cginc" #include "AtomicDeltas.cginc" #include "Phases.cginc" #include "QueryDefinitions.cginc" #define MAX_RESULTS_PER_SIMPLEX 32 #pragma kernel Clear #pragma kernel BuildUnsortedList #pragma kernel FindPopulatedLevels #pragma kernel SortList #pragma kernel BuildContactList #pragma kernel PrefixSumColliderCounts #pragma kernel SortContactPairs StructuredBuffer positions; StructuredBuffer orientations; StructuredBuffer principalRadii; StructuredBuffer activeParticles; StructuredBuffer simplices; StructuredBuffer filters; RWStructuredBuffer simplexBounds; // bounding box of each simplex. StructuredBuffer transforms; StructuredBuffer shapes; RWStructuredBuffer sortedColliderIndices; RWStructuredBuffer colliderTypeCounts; RWStructuredBuffer contactOffsetsPerType; RWStructuredBuffer unsortedContactPairs; RWStructuredBuffer cellIndices; RWStructuredBuffer cellOffsets; RWStructuredBuffer cellCounts; RWStructuredBuffer offsetInCells; RWStructuredBuffer contacts; RWStructuredBuffer contactPairs; RWStructuredBuffer dispatchBuffer; StructuredBuffer solverToWorld; StructuredBuffer worldToSolver; uint maxResults; uint queryCount; // amount of colliders in the grid. uint cellsPerShape; // max amount of cells a collider can be inserted into. Typically this is 8. int shapeTypeCount; // number of different query shapes, ie: box, sphere, ray, etc. aabb CalculateShapeAABB(in queryShape shape) { float offset = shape.contactOffset + shape.maxDistance; aabb bounds; bounds.min_ = FLT_MAX; bounds.max_ = FLT_MIN; switch (shape.type) { case SPHERE_QUERY: bounds.FromParticle(shape.center, shape.size.x + offset); break; case BOX_QUERY: bounds.FromEdge(shape.center - shape.size*0.5f, shape.center + shape.size * 0.5f, offset); break; case RAY_QUERY: bounds.FromEdge(shape.center, shape.center + shape.size, offset); break; } return bounds; } [numthreads(128, 1, 1)] void Clear (uint3 id : SV_DispatchThreadID) { unsigned int i = id.x; if (i == 0) { for (int l = 0; l <= GRID_LEVELS; ++l) levelPopulation[l] = 0; } // clear all cell offsets to invalid, so that we can later use atomic minimum to calculate the offset. if (i < maxCells) { cellOffsets[i] = INVALID; cellCounts[i] = 0; } // clear all cell indices to invalid. if (i < queryCount) { for (uint j = 0; j < cellsPerShape; ++j) cellIndices[i*cellsPerShape+j] = INVALID; } } [numthreads(128, 1, 1)] void BuildUnsortedList (uint3 id : SV_DispatchThreadID) { unsigned int i = id.x; if (i >= queryCount) return; // get bounds in solver space: aabb bounds = CalculateShapeAABB(shapes[i]).Transformed(worldToSolver[0].Multiply(transforms[i])); // calculate bounds size, grid level and cell size: float4 size = bounds.max_ - bounds.min_; float maxSize = max(max (size.x, size.y), size.z); int level = GridLevelForSize(maxSize); float cellSize = CellSizeOfLevel(level); // calculate max and min cell coordinates (force 4th component to zero, might not be after expanding) int4 minCell = floor(bounds.min_ / cellSize); int4 maxCell = floor(bounds.max_ / cellSize); minCell[3] = 0; maxCell[3] = 0; int4 cellSpan = maxCell - minCell; // insert collider in cells: for (int x = 0; x <= cellSpan[0]; ++x) { for (int y = 0; y <= cellSpan[1]; ++y) { for (int z = 0; z <= cellSpan[2]; ++z) { int cellIndex = GridHash(minCell + int4(x, y, z, level)); // calculate flat index of this cell into arrays: int k = x + y*2 + z*4 + i*cellsPerShape; cellIndices[k] = cellIndex; InterlockedAdd(cellCounts[cellIndex],1,offsetInCells[k]); } } } // atomically increase this level's population by one: InterlockedAdd(levelPopulation[1 + level],1); } [numthreads(128, 1, 1)] void SortList (uint3 id : SV_DispatchThreadID) { uint i = id.x; if (i >= queryCount * cellsPerShape) return; uint cellIndex = cellIndices[i]; if (cellIndex != INVALID) { // write shape to its sorted index: uint sortedIndex = cellOffsets[cellIndex] + offsetInCells[i]; sortedColliderIndices[sortedIndex] = i; } } [numthreads(128, 1, 1)] void BuildContactList (uint3 id : SV_DispatchThreadID) { unsigned int threadIndex = id.x; if (threadIndex >= pointCount + edgeCount + triangleCount) return; uint cellCount = queryCount * cellsPerShape; int candidateCount = 0; uint candidates[MAX_RESULTS_PER_SIMPLEX]; int simplexSize; int simplexStart = GetSimplexStartAndSize(threadIndex, simplexSize); aabb b = simplexBounds[threadIndex]; // max size of the particle bounds in cells: int4 maxSize = int4(10,10,10,10); // build a list of candidate colliders: for (uint m = 1; m <= levelPopulation[0]; ++m) { uint l = levelPopulation[m]; float cellSize = CellSizeOfLevel(l); int4 minCell = floor(b.min_ / cellSize); int4 maxCell = floor(b.max_ / cellSize); maxCell = minCell + min(maxCell - minCell, maxSize); for (int x = minCell[0]; x <= maxCell[0]; ++x) { for (int y = minCell[1]; y <= maxCell[1]; ++y) { for (int z = minCell[2]; z <= maxCell[2]; ++z) { uint flatCellIndex = GridHash(int4(x,y,z,l)); uint cellStart = cellOffsets[flatCellIndex]; uint cellCount = cellCounts[flatCellIndex]; // iterate through queries in the neighbour cell for (uint n = cellStart; n < cellStart + cellCount; ++n) { if (candidateCount < MAX_RESULTS_PER_SIMPLEX) candidates[candidateCount++] = sortedColliderIndices[n] / cellsPerShape; } } } } } //evaluate candidates and create contacts: if (candidateCount > 0) { // insert sort: for (int k = 1; k < candidateCount; ++k) { uint key = candidates[k]; int j = k - 1; while (j >= 0 && candidates[j] > key) candidates[j + 1] = candidates[j--]; candidates[j + 1] = key; } // make sure each candidate only shows up once in the list: int first = 0, contactCount = 0; while(++first != candidateCount) { if (candidates[contactCount] != candidates[first]) candidates[++contactCount] = candidates[first]; } contactCount++; // append contacts: for (int i = 0; i < contactCount; i++) { int c = candidates[i]; // get shape bounds in solver space: aabb colliderBoundsSS = CalculateShapeAABB(shapes[c]).Transformed(worldToSolver[0].Multiply(transforms[c])); // check if any simplex particle and the collider should collide: bool shouldCollide = false; int colliderCategory = shapes[c].filter & CategoryMask; int colliderMask = (shapes[c].filter & MaskMask) >> 16; for (int j = 0; j < simplexSize; ++j) { int simplexCategory = filters[simplices[simplexStart + j]] & CategoryMask; int simplexMask = (filters[simplices[simplexStart + j]] & MaskMask) >> 16; shouldCollide = shouldCollide || ((simplexCategory & colliderMask) != 0 && (simplexMask & colliderCategory) != 0); } if (shouldCollide && b.IntersectsAabb(colliderBoundsSS)) { uint count; InterlockedAdd(dispatchBuffer[7], 1, count); // technically incorrect, as number of pairs != number of contacts but // we will ignore either excess pairs or contacts. if (count < maxResults) { // increment the amount of contacts for this shape type: InterlockedAdd(colliderTypeCounts[shapes[c].type],1); // enqueue a new contact pair: unsortedContactPairs[count] = uint2(threadIndex,c); InterlockedMax(dispatchBuffer[4],(count + 1) / 128 + 1); } } } } } [numthreads(1, 1, 1)] void PrefixSumColliderCounts (uint3 id : SV_DispatchThreadID) { contactOffsetsPerType[0] = 0; int i; for (i = 0; i < shapeTypeCount; ++i) { contactOffsetsPerType[i+1] = contactOffsetsPerType[i] + colliderTypeCounts[i]; // write amount of pairs per collider type in the dispatch buffer: dispatchBuffer[8 + i*4] = colliderTypeCounts[i] / 128 + 1; dispatchBuffer[8 + i*4 + 3] = colliderTypeCounts[i]; } } [numthreads(128, 1, 1)] void SortContactPairs (uint3 id : SV_DispatchThreadID) { uint i = id.x; if (i >= dispatchBuffer[7] || i >= maxResults) return; uint2 pair = unsortedContactPairs[i]; int shapeType = (int)shapes[pair.y].type; // decrement amount of pairs for the given collider type: uint count; InterlockedAdd(colliderTypeCounts[shapeType],-1, count); // write the pair directly at its position in the sorted array: contactPairs[contactOffsetsPerType[shapeType] + count - 1] = pair; }