_xiaofang/xiaofang/Assets/Obi/Resources/Compute/BoxShape.compute
杨号敬 bcc74f0465 add
2024-12-18 02:18:45 +08:00

125 lines
4.1 KiB
Plaintext

#include "ColliderDefinitions.cginc"
#include "ContactHandling.cginc"
#include "Transform.cginc"
#include "Simplex.cginc"
#include "Bounds.cginc"
#include "SolverParameters.cginc"
#include "Optimization.cginc"
#pragma kernel GenerateContacts
StructuredBuffer<float4> positions;
StructuredBuffer<quaternion> orientations;
StructuredBuffer<float4> principalRadii;
StructuredBuffer<float4> velocities;
StructuredBuffer<int> simplices;
StructuredBuffer<transform> transforms;
StructuredBuffer<shape> shapes;
StructuredBuffer<uint2> contactPairs;
StructuredBuffer<int> contactOffsetsPerType;
RWStructuredBuffer<contact> contacts;
RWStructuredBuffer<uint> dispatchBuffer;
StructuredBuffer<transform> worldToSolver;
uint maxContacts;
struct Box : IDistanceFunction
{
shape s;
transform colliderToSolver;
void Evaluate(in float4 pos, in float4 radii, in quaternion orientation, inout SurfacePoint projectedPoint)
{
float4 center = s.center * colliderToSolver.scale;
float4 size = s.size * colliderToSolver.scale * 0.5f;
// clamp the point to the surface of the box:
float4 pnt = colliderToSolver.InverseTransformPointUnscaled(pos) - center;
if (s.is2D())
pnt[2] = 0;
// get minimum distance for each axis:
float4 distances = size - abs(pnt);
if (distances.x >= 0 && distances.y >= 0 && distances.z >= 0)
{
projectedPoint.normal = float4(0,0,0,0);
projectedPoint.pos = pnt;
// find minimum distance in all three axes and the axis index:
if (distances.y < distances.x && distances.y < distances.z)
{
projectedPoint.normal[1] = sign(pnt[1]);
projectedPoint.pos[1] = size[1] * projectedPoint.normal[1];
}
else if (distances.z < distances.x && distances.z < distances.y)
{
projectedPoint.normal[2] = sign(pnt[2]);
projectedPoint.pos[2] = size[2] * projectedPoint.normal[2];
}
else
{
projectedPoint.normal[0] = sign(pnt[0]);
projectedPoint.pos[0] = size[0] * projectedPoint.normal[0];
}
}
else
{
projectedPoint.pos = clamp(pnt, -size, size);
projectedPoint.normal = normalizesafe(pnt - projectedPoint.pos);
}
projectedPoint.pos = colliderToSolver.TransformPointUnscaled(projectedPoint.pos + center + projectedPoint.normal * s.contactOffset);
projectedPoint.normal = colliderToSolver.TransformDirection(projectedPoint.normal);
projectedPoint.bary = float4(1,0,0,0);
}
};
[numthreads(128, 1, 1)]
void GenerateContacts (uint3 id : SV_DispatchThreadID)
{
uint i = id.x;
// entry #11 in the dispatch buffer is the amount of pairs for the first shape type.
if (i >= dispatchBuffer[11 + 4*BOX_SHAPE]) return;
uint count = contacts.IncrementCounter();
if (count < maxContacts)
{
int firstPair = contactOffsetsPerType[BOX_SHAPE];
int simplexIndex = contactPairs[firstPair + i].x;
int colliderIndex = contactPairs[firstPair + i].y;
contact c = (contact)0;
Box boxShape;
boxShape.colliderToSolver = worldToSolver[0].Multiply(transforms[colliderIndex]);
boxShape.s = shapes[colliderIndex];
int simplexSize;
int simplexStart = GetSimplexStartAndSize(simplexIndex, simplexSize);
float4 simplexBary = BarycenterForSimplexOfSize(simplexSize);
float4 simplexPoint;
SurfacePoint surfacePoint = Optimize(boxShape, positions, orientations, principalRadii,
simplices, simplexStart, simplexSize, simplexBary, simplexPoint, surfaceCollisionIterations, surfaceCollisionTolerance);
c.pointB = surfacePoint.pos;
c.normal = surfacePoint.normal * boxShape.s.isInverted();
c.pointA = simplexBary;
c.bodyA = simplexIndex;
c.bodyB = colliderIndex;
contacts[count] = c;
InterlockedMax(dispatchBuffer[0],(count + 1) / 128 + 1);
InterlockedMax(dispatchBuffer[3], count + 1);
}
}