_xiaofang/xiaofang/Assets/Obi/Resources/Compute/ColliderGrid.compute
杨号敬 bcc74f0465 add
2024-12-18 02:18:45 +08:00

474 lines
16 KiB
Plaintext

#include "GridUtils.cginc"
#include "CollisionMaterial.cginc"
#include "ContactHandling.cginc"
#include "ColliderDefinitions.cginc"
#include "Rigidbody.cginc"
#include "Simplex.cginc"
#include "Bounds.cginc"
#include "SolverParameters.cginc"
#include "AtomicDeltas.cginc"
#include "Phases.cginc"
#define MAX_CONTACTS_PER_SIMPLEX 32
#pragma kernel Clear
#pragma kernel BuildUnsortedList
#pragma kernel FindPopulatedLevels
#pragma kernel SortList
#pragma kernel BuildContactList
#pragma kernel PrefixSumColliderCounts
#pragma kernel SortContactPairs
#pragma kernel ApplyForceZones
#pragma kernel WriteForceZoneResults
StructuredBuffer<float4> positions;
StructuredBuffer<quaternion> orientations;
StructuredBuffer<float4> principalRadii;
StructuredBuffer<float> invMasses;
StructuredBuffer<float4> velocities;
RWStructuredBuffer<float4> externalForces;
RWStructuredBuffer<float4> wind;
RWStructuredBuffer<float> life;
StructuredBuffer<int> activeParticles;
StructuredBuffer<int> simplices;
StructuredBuffer<int> filters;
RWStructuredBuffer<aabb> simplexBounds; // bounding box of each simplex.
StructuredBuffer<aabb> aabbs;
StructuredBuffer<transform> transforms;
StructuredBuffer<shape> shapes;
StructuredBuffer<forceZone> forceZones;
RWStructuredBuffer<uint> sortedColliderIndices;
RWStructuredBuffer<uint> colliderTypeCounts;
RWStructuredBuffer<uint> contactOffsetsPerType;
RWStructuredBuffer<uint2> unsortedContactPairs;
RWStructuredBuffer<uint> cellIndices;
RWStructuredBuffer<uint> cellOffsets;
RWStructuredBuffer<uint> cellCounts;
RWStructuredBuffer<uint> offsetInCells;
RWStructuredBuffer<contact> contacts;
RWStructuredBuffer<uint2> contactPairs;
RWStructuredBuffer<uint> dispatchBuffer;
StructuredBuffer<transform> solverToWorld;
StructuredBuffer<transform> worldToSolver;
uint maxContacts;
uint colliderCount; // amount of colliders in the grid.
uint cellsPerCollider; // max amount of cells a collider can be inserted into. Typically this is 8.
int shapeTypeCount; // number of different collider shapes, ie: box, sphere, sdf, etc.
uint particleCount;
float deltaTime;
[numthreads(128, 1, 1)]
void Clear (uint3 id : SV_DispatchThreadID)
{
unsigned int i = id.x;
if (i == 0)
{
for (int l = 0; l <= GRID_LEVELS; ++l)
levelPopulation[l] = 0;
}
// clear all cell offsets to invalid, so that we can later use atomic minimum to calculate the offset.
if (i < maxCells)
{
cellOffsets[i] = INVALID;
cellCounts[i] = 0;
}
// clear all cell indices to invalid.
if (i < colliderCount)
{
for (uint j = 0; j < cellsPerCollider; ++j)
cellIndices[i*cellsPerCollider+j] = INVALID;
}
}
[numthreads(128, 1, 1)]
void BuildUnsortedList (uint3 id : SV_DispatchThreadID)
{
unsigned int i = id.x;
if (i >= colliderCount) return;
aabb bounds = aabbs[i];
int rb = shapes[i].rigidbodyIndex;
// Expand bounds by rigidbody's linear velocity
// (check against out of bounds rigidbody access, can happen when a destroyed collider references a rigidbody that has just been destroyed too)
if (rb >= 0)// && rb < rigidbodies.Length)
bounds.Sweep(rigidbodies[rb].velocity * deltaTime);
// Expand bounds by collision material's stick distance:
if (shapes[i].materialIndex >= 0)
bounds.Expand(collisionMaterials[shapes[i].materialIndex].stickDistance);
// calculate bounds size, grid level and cell size:
float4 size = bounds.max_ - bounds.min_;
float maxSize = max(max (size.x, size.y), size.z);
int level = GridLevelForSize(maxSize);
float cellSize = CellSizeOfLevel(level);
// calculate max and min cell coordinates (force 4th component to zero, might not be after expanding)
int4 minCell = floor(bounds.min_ / cellSize);
int4 maxCell = floor(bounds.max_ / cellSize);
minCell[3] = 0;
maxCell[3] = 0;
// if the collider is 2D, project it to the z = 0 cells.
if (shapes[i].is2D())
{
minCell[2] = 0;
maxCell[2] = 0;
}
int4 cellSpan = maxCell - minCell;
// insert collider in cells:
for (int x = 0; x <= cellSpan[0]; ++x)
{
for (int y = 0; y <= cellSpan[1]; ++y)
{
for (int z = 0; z <= cellSpan[2]; ++z)
{
int cellIndex = GridHash(minCell + int4(x, y, z, level));
// calculate flat index of this cell into arrays:
int k = x + y*2 + z*4 + i*cellsPerCollider;
cellIndices[k] = cellIndex;
InterlockedAdd(cellCounts[cellIndex],1,offsetInCells[k]);
}
}
}
// atomically increase this level's population by one:
InterlockedAdd(levelPopulation[1 + level],1);
}
[numthreads(128, 1, 1)]
void SortList (uint3 id : SV_DispatchThreadID)
{
uint i = id.x;
if (i >= colliderCount * cellsPerCollider) return;
uint cellIndex = cellIndices[i];
if (cellIndex != INVALID)
{
// write collider to its sorted index:
uint sortedIndex = cellOffsets[cellIndex] + offsetInCells[i];
sortedColliderIndices[sortedIndex] = i;
}
}
[numthreads(128, 1, 1)]
void BuildContactList (uint3 id : SV_DispatchThreadID)
{
unsigned int threadIndex = id.x;
if (threadIndex >= pointCount + edgeCount + triangleCount) return;
uint cellCount = colliderCount * cellsPerCollider;
int candidateCount = 0;
uint candidates[MAX_CONTACTS_PER_SIMPLEX];
int simplexSize;
int simplexStart = GetSimplexStartAndSize(threadIndex, simplexSize);
aabb b = simplexBounds[threadIndex].Transformed(solverToWorld[0]);
// max size of the particle bounds in cells:
int4 maxSize = int4(10,10,10,10);
// build a list of candidate colliders:
for (uint m = 1; m <= levelPopulation[0]; ++m)
{
uint l = levelPopulation[m];
float cellSize = CellSizeOfLevel(l);
int4 minCell = floor(b.min_ / cellSize);
int4 maxCell = floor(b.max_ / cellSize);
maxCell = minCell + min(maxCell - minCell, maxSize);
for (int x = minCell[0]; x <= maxCell[0]; ++x)
{
for (int y = minCell[1]; y <= maxCell[1]; ++y)
{
// for 2D mode, project each cell at z == 0 and check them too. This way we ensure 2D colliders
// (which are inserted in cells with z == 0) are accounted for in the broadphase.
if (mode == 1)
{
uint flatCellIndex = GridHash(int4(x,y,0,l));
uint cellStart = cellOffsets[flatCellIndex];
uint cellCount = cellCounts[flatCellIndex];
// iterate through colliders in the neighbour cell
for (uint n = cellStart; n < cellStart + cellCount; ++n)
{
// sorted insert into the candidates list:
if (candidateCount < MAX_CONTACTS_PER_SIMPLEX)
candidates[candidateCount++] = sortedColliderIndices[n] / cellsPerCollider;
}
}
for (int z = minCell[2]; z <= maxCell[2]; ++z)
{
uint flatCellIndex = GridHash(int4(x,y,z,l));
uint cellStart = cellOffsets[flatCellIndex];
uint cellCount = cellCounts[flatCellIndex];
// iterate through colliders in the neighbour cell
for (uint n = cellStart; n < cellStart + cellCount; ++n)
{
if (candidateCount < MAX_CONTACTS_PER_SIMPLEX)
candidates[candidateCount++] = sortedColliderIndices[n] / cellsPerCollider;
}
}
}
}
}
//evaluate candidates and create contacts:
if (candidateCount > 0)
{
// insert sort:
for (int k = 1; k < candidateCount; ++k)
{
uint key = candidates[k];
int j = k - 1;
while (j >= 0 && candidates[j] > key)
candidates[j + 1] = candidates[j--];
candidates[j + 1] = key;
}
// make sure each candidate only shows up once in the list:
int first = 0, contactCount = 0;
while(++first != candidateCount)
{
if (candidates[contactCount] != candidates[first])
candidates[++contactCount] = candidates[first];
}
contactCount++;
// append contacts:
for (int i = 0; i < contactCount; i++)
{
int c = candidates[i];
aabb colliderBoundsWS = aabbs[c];
int rb = shapes[c].rigidbodyIndex;
// Expand bounds by rigidbody's linear velocity:
if (rb >= 0)
colliderBoundsWS.Sweep(rigidbodies[rb].velocity * deltaTime);
// Expand bounds by collision material's stick distance:
if (shapes[c].materialIndex >= 0)
colliderBoundsWS.Expand(collisionMaterials[shapes[c].materialIndex].stickDistance);
// check if any simplex particle and the collider should collide:
bool shouldCollide = false;
int colliderCategory = shapes[c].phase & CategoryMask;
int colliderMask = (shapes[c].phase & MaskMask) >> 16;
for (int j = 0; j < simplexSize; ++j)
{
int simplexCategory = filters[simplices[simplexStart + j]] & CategoryMask;
int simplexMask = (filters[simplices[simplexStart + j]] & MaskMask) >> 16;
shouldCollide = shouldCollide || ((simplexCategory & colliderMask) != 0 && (simplexMask & colliderCategory) != 0);
}
if (shouldCollide && b.IntersectsAabb(colliderBoundsWS, mode == 1))
{
uint count;
InterlockedAdd(dispatchBuffer[7], 1, count);
// technically incorrect, as number of pairs != number of contacts but
// we will ignore either excess pairs or contacts.
if (count < maxContacts)
{
// increment the amount of contacts for this shape type:
InterlockedAdd(colliderTypeCounts[shapes[c].type],1);
// enqueue a new contact pair:
unsortedContactPairs[count] = uint2(threadIndex,c);
InterlockedMax(dispatchBuffer[4],(count + 1) / 128 + 1);
}
}
}
}
}
[numthreads(1, 1, 1)]
void PrefixSumColliderCounts (uint3 id : SV_DispatchThreadID)
{
contactOffsetsPerType[0] = 0;
int i;
for (i = 0; i < shapeTypeCount; ++i)
{
contactOffsetsPerType[i+1] = contactOffsetsPerType[i] + colliderTypeCounts[i];
// write amount of pairs per collider type in the dispatch buffer:
dispatchBuffer[8 + i*4] = colliderTypeCounts[i] / 128 + 1;
dispatchBuffer[8 + i*4 + 3] = colliderTypeCounts[i];
}
}
[numthreads(128, 1, 1)]
void SortContactPairs (uint3 id : SV_DispatchThreadID)
{
uint i = id.x;
if (i >= dispatchBuffer[7] || i >= maxContacts) return;
uint2 pair = unsortedContactPairs[i];
int shapeType = (int)shapes[pair.y].type;
// decrement amount of pairs for the given collider type:
uint count;
InterlockedAdd(colliderTypeCounts[shapeType],-1, count);
// write the pair directly at its position in the sorted array:
contactPairs[contactOffsetsPerType[shapeType] + count - 1] = pair;
}
void AtomicAddExternalForceDelta(in int index, in float4 delta)
{
InterlockedAddFloat(deltasAsInt, index, 0, delta.x);
InterlockedAddFloat(deltasAsInt, index, 1, delta.y);
InterlockedAddFloat(deltasAsInt, index, 2, delta.z);
}
void AtomicAddWindDelta(in int index, in float4 delta)
{
InterlockedAddFloat(orientationDeltasAsInt, index, 0, delta.x);
InterlockedAddFloat(orientationDeltasAsInt, index, 1, delta.y);
InterlockedAddFloat(orientationDeltasAsInt, index, 2, delta.z);
}
void AtomicAddLifeDelta(in int index, in float delta)
{
InterlockedAddFloat(deltasAsInt, index, 3, delta);
}
[numthreads(128, 1, 1)]
void ApplyForceZones (uint3 id : SV_DispatchThreadID)
{
unsigned int i = id.x;
if (i >= dispatchBuffer[3]) return;
int forceZoneIndex = shapes[contacts[i].bodyB].forceZoneIndex;
if (forceZoneIndex >= 0)
{
int simplexSize;
int simplexStart = GetSimplexStartAndSize(contacts[i].bodyA, simplexSize);
for (int j = 0; j < simplexSize; ++j)
{
int particleIndex = simplices[simplexStart + j];
if (invMasses[particleIndex] > 0)
{
float dist = -dot(positions[particleIndex] - contacts[i].pointB, contacts[i].normal);
if (dist < 0) continue;
float4 axis = worldToSolver[0].Multiply(transforms[contacts[i].bodyB]).TransformDirection(float4(0, 0, 1, 0));
// calculate falloff region based on min/max distances:
float falloff = 1;
float range = forceZones[forceZoneIndex].maxDistance - forceZones[forceZoneIndex].minDistance;
if (abs(range) > EPSILON)
falloff = pow(saturate((dist - forceZones[forceZoneIndex].minDistance) / range), forceZones[forceZoneIndex].falloffPower);
float forceIntensity = forceZones[forceZoneIndex].intensity * falloff;
float dampIntensity = forceZones[forceZoneIndex].damping * falloff;
// calculate force direction, depending on the type of the force field:
float4 result = FLOAT4_ZERO;
switch (forceZones[forceZoneIndex].type)
{
case ZONETYPE_RADIAL:
result = contacts[i].normal * forceIntensity;
break;
case ZONETYPE_VORTEX:
result = float4(cross(axis.xyz * forceIntensity, contacts[i].normal.xyz),0);
break;
case ZONETYPE_DIRECTIONAL:
result = axis * forceIntensity;
break;
default:
AtomicAddLifeDelta(particleIndex, -forceIntensity * deltaTime);
return;
}
// calculate damping along force direction:
float4 dampingDir;
switch (forceZones[forceZoneIndex].dampingDir)
{
case DAMPDIR_FORCE:
{
float4 forceDir = normalizesafe(result);
result -= forceDir * dot(velocities[particleIndex], forceDir) * dampIntensity;
}
break;
case DAMPDIR_SURFACE:
result -= contacts[i].normal * dot(velocities[particleIndex], contacts[i].normal) * dampIntensity;
break;
default:
result -= velocities[particleIndex] * dampIntensity;
break;
}
// here we reuse position and orientation delta buffers as velocity and wind buffers for atomic writes:
switch (forceZones[forceZoneIndex].mode)
{
case FORCEMODE_ACCEL:
AtomicAddExternalForceDelta(particleIndex, result / simplexSize / invMasses[particleIndex]);
break;
case FORCEMODE_FORCE:
AtomicAddExternalForceDelta(particleIndex, result / simplexSize);
break;
case FORCEMODE_WIND:
AtomicAddWindDelta(particleIndex, result / simplexSize);
break;
}
}
}
}
}
[numthreads(128, 1, 1)]
void WriteForceZoneResults (uint3 id : SV_DispatchThreadID)
{
unsigned int i = id.x;
if (i >= particleCount) return;
int p = activeParticles[i];
externalForces[p].xyz += float3(asfloat(deltasAsInt[p].x),
asfloat(deltasAsInt[p].y),
asfloat(deltasAsInt[p].z));
wind[p].xyz += float3(asfloat(orientationDeltasAsInt[p].x),
asfloat(orientationDeltasAsInt[p].y),
asfloat(orientationDeltasAsInt[p].z));
life[p] += asfloat(deltasAsInt[p].w);
deltasAsInt[p] = uint4(0, 0, 0, 0);
orientationDeltasAsInt[p] = uint4(0, 0, 0, 0);
}