230 lines
5.8 KiB
HLSL
230 lines
5.8 KiB
HLSL
#ifndef QUATERNION_INCLUDE
|
|
#define QUATERNION_INCLUDE
|
|
|
|
#define QUATERNION_IDENTITY float4(0, 0, 0, 1)
|
|
|
|
typedef float4 quaternion;
|
|
|
|
// Quaternion multiplication
|
|
// http://mathworld.wolfram.com/Quaternion.html
|
|
quaternion qmul(quaternion q1, quaternion q2)
|
|
{
|
|
return quaternion(
|
|
q2.xyz * q1.w + q1.xyz * q2.w + cross(q1.xyz, q2.xyz),
|
|
q1.w * q2.w - dot(q1.xyz, q2.xyz)
|
|
);
|
|
}
|
|
|
|
// Vector rotation with a quaternion
|
|
// http://mathworld.wolfram.com/Quaternion.html
|
|
float3 rotate_vector(quaternion r, float3 v)
|
|
{
|
|
float4 r_c = r * float4(-1, -1, -1, 1);
|
|
return qmul(r, qmul(float4(v, 0), r_c)).xyz;
|
|
}
|
|
|
|
// A given angle of rotation about a given axis
|
|
quaternion axis_angle(float3 axis, float angle)
|
|
{
|
|
float sn = sin(angle * 0.5);
|
|
float cs = cos(angle * 0.5);
|
|
return quaternion(axis * sn, cs);
|
|
}
|
|
|
|
// https://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another
|
|
quaternion from_to_rotation(float3 v1, float3 v2)
|
|
{
|
|
float4 q;
|
|
float d = dot(v1, v2);
|
|
if (d < -0.999999)
|
|
{
|
|
float3 right = float3(1, 0, 0);
|
|
float3 up = float3(0, 1, 0);
|
|
float3 tmp = cross(right, v1);
|
|
if (length(tmp) < 0.000001)
|
|
{
|
|
tmp = cross(up, v1);
|
|
}
|
|
tmp = normalize(tmp);
|
|
q = axis_angle(tmp, 3.14159265359f);
|
|
} else if (d > 0.999999) {
|
|
q = QUATERNION_IDENTITY;
|
|
} else {
|
|
q.xyz = cross(v1, v2);
|
|
q.w = 1 + d;
|
|
q = normalize(q);
|
|
}
|
|
return q;
|
|
}
|
|
|
|
float4 q_conj(float4 q)
|
|
{
|
|
return float4(-q.x, -q.y, -q.z, q.w);
|
|
}
|
|
|
|
// https://jp.mathworks.com/help/aeroblks/quaternioninverse.html
|
|
quaternion q_inverse(quaternion q)
|
|
{
|
|
quaternion conj = q_conj(q);
|
|
return conj / (q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w);
|
|
}
|
|
|
|
quaternion q_diff(quaternion q1, quaternion q2)
|
|
{
|
|
return q2 * q_inverse(q1);
|
|
}
|
|
|
|
quaternion q_look_at(float3 forward, float3 up)
|
|
{
|
|
forward = normalize(forward);
|
|
float3 right = normalize(cross(up, forward));
|
|
up = cross(forward, right);
|
|
|
|
float m00 = right.x;
|
|
float m01 = right.y;
|
|
float m02 = right.z;
|
|
float m10 = up.x;
|
|
float m11 = up.y;
|
|
float m12 = up.z;
|
|
float m20 = forward.x;
|
|
float m21 = forward.y;
|
|
float m22 = forward.z;
|
|
|
|
float num8 = (m00 + m11) + m22;
|
|
quaternion q = QUATERNION_IDENTITY;
|
|
|
|
if (num8 > 0.0)
|
|
{
|
|
float num = sqrt(num8 + 1.0);
|
|
q.w = num * 0.5;
|
|
num = 0.5 / num;
|
|
q.x = (m12 - m21) * num;
|
|
q.y = (m20 - m02) * num;
|
|
q.z = (m01 - m10) * num;
|
|
return q;
|
|
}
|
|
else if ((m00 >= m11) && (m00 >= m22))
|
|
{
|
|
float num7 = sqrt(((1.0 + m00) - m11) - m22);
|
|
float num4 = 0.5 / num7;
|
|
q.x = 0.5 * num7;
|
|
q.y = (m01 + m10) * num4;
|
|
q.z = (m02 + m20) * num4;
|
|
q.w = (m12 - m21) * num4;
|
|
return q;
|
|
}
|
|
else if (m11 > m22)
|
|
{
|
|
float num6 = sqrt(((1.0 + m11) - m00) - m22);
|
|
float num3 = 0.5 / num6;
|
|
q.x = (m10 + m01) * num3;
|
|
q.y = 0.5 * num6;
|
|
q.z = (m21 + m12) * num3;
|
|
q.w = (m20 - m02) * num3;
|
|
return q;
|
|
}
|
|
else
|
|
{
|
|
float num5 = sqrt(((1.0 + m22) - m00) - m11);
|
|
float num2 = 0.5 / num5;
|
|
q.x = (m20 + m02) * num2;
|
|
q.y = (m21 + m12) * num2;
|
|
q.z = 0.5 * num5;
|
|
q.w = (m01 - m10) * num2;
|
|
return q;
|
|
}
|
|
}
|
|
|
|
quaternion q_slerp(in quaternion a, in quaternion b, float t)
|
|
{
|
|
// if either input is zero, return the other.
|
|
if (length(a) == 0.0)
|
|
{
|
|
if (length(b) == 0.0)
|
|
return QUATERNION_IDENTITY;
|
|
else
|
|
return b;
|
|
}
|
|
else if (length(b) == 0.0)
|
|
{
|
|
return a;
|
|
}
|
|
else
|
|
{
|
|
float cosHalfAngle = a.w * b.w + dot(a.xyz, b.xyz);
|
|
|
|
if (cosHalfAngle >= 1.0 || cosHalfAngle <= -1.0)
|
|
{
|
|
return a;
|
|
}
|
|
else
|
|
{
|
|
if (cosHalfAngle < 0.0)
|
|
{
|
|
b.xyz = -b.xyz;
|
|
b.w = -b.w;
|
|
cosHalfAngle = -cosHalfAngle;
|
|
}
|
|
|
|
float blendA;
|
|
float blendB;
|
|
if (cosHalfAngle < 0.99)
|
|
{
|
|
// do proper slerp for big angles
|
|
float halfAngle = acos(cosHalfAngle);
|
|
float sinHalfAngle = sin(halfAngle);
|
|
float oneOverSinHalfAngle = 1.0 / sinHalfAngle;
|
|
blendA = sin(halfAngle * (1.0 - t)) * oneOverSinHalfAngle;
|
|
blendB = sin(halfAngle * t) * oneOverSinHalfAngle;
|
|
}
|
|
else
|
|
{
|
|
// do lerp if angle is really small.
|
|
blendA = 1.0 - t;
|
|
blendB = t;
|
|
}
|
|
|
|
quaternion result = quaternion(blendA * a.xyz + blendB * b.xyz, blendA * a.w + blendB * b.w);
|
|
|
|
if (length(result) > 0.0)
|
|
return normalize(result);
|
|
else
|
|
return QUATERNION_IDENTITY;
|
|
}
|
|
}
|
|
}
|
|
|
|
quaternion q_eulerXYZ(float3 euler)
|
|
{
|
|
float3 s, c;
|
|
sincos(0.5f * euler, s, c);
|
|
return quaternion(
|
|
// s.x * c.y * c.z + s.y * s.z * c.x,
|
|
// s.y * c.x * c.z - s.x * s.z * c.y,
|
|
// s.z * c.x * c.y - s.x * s.y * c.z,
|
|
// c.x * c.y * c.z + s.y * s.z * s.x
|
|
float4(s.xyz, c.x) * c.yxxy * c.zzyz + s.yxxy * s.zzyz * float4(c.xyz, s.x) * float4(1.0f, -1.0f, -1.0f, 1.0f)
|
|
);
|
|
}
|
|
|
|
float4x4 q_toMatrix(quaternion q)
|
|
{
|
|
float xx = q.x * q.x;
|
|
float xy = q.x * q.y;
|
|
float xz = q.x * q.z;
|
|
float xw = q.x * q.w;
|
|
|
|
float yy = q.y * q.y;
|
|
float yz = q.y * q.z;
|
|
float yw = q.y * q.w;
|
|
|
|
float zz = q.z * q.z;
|
|
float zw = q.z * q.w;
|
|
|
|
return float4x4(1 - 2 * (yy + zz), 2 * (xy - zw), 2 * (xz + yw), 0,
|
|
2 * (xy + zw), 1 - 2 * (xx + zz), 2 * (yz - xw), 0,
|
|
2 * (xz - yw), 2 * (yz + xw), 1 - 2 * (xx + yy), 0,
|
|
0, 0, 0, 1);
|
|
}
|
|
|
|
#endif |